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Sommario 
Una strategia comunemente adottata per modellare il meccanismo di interazione Fluido-Struttura (FSI) consiste 

nell’accoppiare la soluzione fluidodinamica, ottenuta con metodi basati sulla CFD, a solutori strutturali in un 

processo iterativo. Il progetto di ricerca europeo “RIBES”, finanziato nell’ambito del settimo programma quadro 

(aeronautica e trasporto aereo), è finalizzato all’incremento dell’accuratezza di strumenti di analisi aeroelastica 

basati sull’accoppiamento CFD-CSM, allo sviluppo di ambienti di ottimizzazione strutturale e alla definizione di 

una campagna sperimentale di prove aeroelastiche in galleria del vento per la validazione di codici di analisi 

aeroelastica. Lo strumento matematico sul quale si basa la strategia di parametrizzazione delle geometrie e la 

tecnica di interpolazione adottata nella procedura di trasferimento dei carichi fra il dominio fluidodinamico e 

quello strutturale, fa riferimento alle Radial Basis Functions. Questo documento fornisce una panoramica del 

progetto RIBES, ne riporta lo stato delle attività e descrive la pianificazione della campagna sperimentale. 

 
Abstract 
A common strategy to model the Fluid Structure Interaction (FSI) mechanisms is to couple the fluid dynamic 

solution, obtained by CFD tools, with structural solvers in an iterative process. The European “RIBES” research 

project, funded within the 7th framework programme (aeronautics and air transport), is focused on the improvement 

of the accuracy of CFD-CSM based aeroelastic analysis tools, on the development of structural optimization 

environments and on the setup of an aeroelastic wind tunnel test campaign aimed to the FSI analysis codes 

validation. The shape parameterization strategy and the interpolation technique adopted in the loads transfer 

procedure between CFD and FEM domains are based on the Radial Basis Functions mathematical framework. An 

overview of the RIBES project, a report on the status of its activities and the description of the experimental 

campaign plan are in this paper provided. 

 

Keywords: Aeroelasticity, Fluid Structure Interaction, load mapping, Computational Fluid Dynamic, 

Radial Basis Functions. 

1. INTRODUCTION 

The capability to model the interaction of the several mechanisms involved in physics phenomena 

represents a key point in the development of efficient tools for engineering design. Furthermore, the 

interest in automating the procedure able to face such analyses raised with the modern view of facing 

design problems by numerical optimization strategies. The importance of such approach is particularly 

felt in the aerospace sector where the integration of multidisciplinary numerical analysis methods within 

optimization environments became a standard approach in many design processes. 
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A discipline on which large research efforts were addressed, in the last decades, is Aeroelasticity1. The 

interaction between aerodynamic loads and structural deformations is, in fact, often the predominant 

mechanism to which the aircraft aerodynamic designer has to deal with. The aerodynamic loads induce 

a deformation that, in a closed loop, and have impact on aerodynamics according to the structural 

properties of the object involved in the fluid interaction. It is then clear how the capability to include the 

structural aeroelastic response in the shape design process is strategic in improving the ability to produce 

lighter, greener and cheaper aircrafts. 

One of the most common and accurate strategies to model the Fluid Structure Interaction (FSI) 

mechanisms is to couple RANS (Reynolds-averaged Navier-Stokes) solvers, with Finite Element codes 

in a so called CFD-CSM (Computational Fluid Dynamics - Computational Structural Mechanics) 

coupling procedure. Several complexities are related to the implementation of such technologies. One 

of them concerns the technique with which to transfer the aerodynamic loads from the wet surfaces of 

the CFD mesh to the structural domain which, in general, have a non-conformal discretization on the 

common boundaries. The forces computed by the fluid dynamic analysis are, in fact, extracted from the 

cells of the CFD walls boundaries in the form of vectors positioned on a cloud of points that will typically 

differ from the FEM grid points on which the loads have to be applied (the grid requirements are, in 

general, different for FEM and CFD analyses). An interpolation between the two domains is then 

required with a consequential introduction of an error. The minimization of the uncertainness associated 

to this process relates to the quality of the mathematical approach with which to face the interpolation. 

The analysis automation and the implementation in optimization environments represent the closure of 

the MDO (Multidisciplinary Design Optimization) tool development problem. 

FSI methodologies, as well as any numerical model, need to be validated against experiments. The 

availability of appropriate experimental databases on test cases representative of the typical 

phenomenon that the numerical tools are aimed to model, is another crucial aspect of the development 

process. A set of experimental static and dynamic aeroelastic campaigns have been planned in the past 

for codes validation purposes and made available to the scientific community (Agard 445.6, 

HIRENASD, EuRAM). Customized measurements are, however, often necessary to better meet the 

validation requirements. 

The above cited topics are the central subjects of the “RIBES” European research project. The specific 

goals are the development of an accurate loads transfer procedure between fluid and structural domains, 

the implementation of a structural numerical optimization procedure and the setup of an experimental 

wind tunnel campaign aimed to the validation of the numerical tools. The innovative aspects of the 

research are the load mapping implementation procedure and the adoption of a mesh morphing 

technique, for the shape optimization, basing both on the Radial Basis Function (RBF) mathematical 

framework. RBFs have been also used in developing a Response Surface metamodel to be applied in 

the optimization procedure. 

The other high valuable part of the project consist in allocating a significant part of the resources on the 

setup of an extensive aeroelastic wind tunnel test campaign to be performed on a model that replicates 

a typical metallic aeronautical wing structure. The aim is to generate an experimental base of assessment 

strongly customized to the software developed within the projects. 

This paper provides an overview of the RIBES project, describes the experimental campaign, and reports 

the activities on progress. 

2. THE RIBES PROJECT 

The “RIBES” (Radial basis functions at fluid Interface Boundaries to Envelope flow results for advanced 

Structural analysis) project is led by the University of Rome “Tor Vergata” and is funded within the EU 

7th framework aeronautics programme JTI-CS-GRA (Joint Technology Initiatives - Clean Sky - Green 

Regional Aircraft). The programme is aimed to the enhancement of numerical methodologies to shorten 

the time to market for new and cleaner solutions thus contributing to reduce the environmental impact 

of aviation (i.e. emissions and noise reduction but also green life cycle). The project started in December 

                                                      
1 Aeroelasticity is involved in several EU projects with focus ranging from flow control to dynamic response 

(AFLoNext, SimSAC, 3AS, JTI Clean Sky). 
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2014 and has a duration of 18 months. As stated its scope is the development and validation of software 

tools for the accurate transfer of loads between numerical models and for structural shape optimization. 

It is divided into three main topics: 

 Development of a load mapping procedure 

 Development of a structural optimization procedure 

 Setup of an experimental campaign 

Partners of research are the RBF Morph™ (www.rbf-morph.com) software vendor, whose technology 

is at the base of the implemented load mapping and shape parameterization methodologies, and the 

aerospace consulting engineering firm Design Methods™ (www.designmethods.aero) which supports 

the activities related to aeronautics. 

3. RECALLS OF RBF THEORY 

Radial basis are very powerful tool able to interpolate everywhere in the space a function defined at 

discrete points from the exact value at original points. The behaviour of the function between points 

depends on the kind of basis adopted. The radial function can be fully or compactly supported. Typical 

RBF functions are shown in Table 1. RBFs are scalar functions with the scalar variable r, which is the 

Euclidean norm of the distance between two points defined in a generic 𝑛-dimensional space. In any 

case, a polynomial corrector is added to guarantee compatibility for rigid modes.  

 

Table 1: Typical RBF functions 

Radial Basis Functions 

with global support 
𝜑(𝑟), 𝑟 = ‖𝑟‖ 

Radial Basis Functions 

with compact support 
𝜑(𝑟) = 𝑓(𝜉), 𝜉 ≤ 1, 𝜉 =

𝑟

𝑅𝑠𝑢𝑝
 

Spline type (𝑅𝑛) 𝑟𝑛, 𝑛 𝑜𝑑𝑑 Wendland (𝐶0) (1 − 𝜉)2 

Thin plate spline (𝑇𝑃𝑆𝑛) 𝑟𝑛log (𝑟), 𝑛 𝑒𝑣𝑒𝑛 Wendland (𝐶2) (1 − 𝜉)4(4𝜉 + 1) 

Multiquadric (𝑀𝑄) √1 + 𝑟2 Wendland (𝐶4) (1 − 𝜉)6 (
35

3
𝜉2 + 6𝜉 + 1) 

 

A linear system (of order equal to the number of source point introduced) needs to be solved for 

coefficients calculation. Once the unknown coefficients are calculated, the motion of an arbitrary point 

inside or outside the domain (interpolation/extrapolation) is expressed as the summation of the radial 

contribution of each source point (if the point falls inside the influence domain). 

An interpolation function 𝑠 composed by a radial basis 𝜑 and a polynomial ℎ of order 𝑚 − 1, where 𝑚 

is said to be the order of 𝜑, introduced with the aim to guarantee the compatibility for rigid motions, is 

defined as follows if 𝑁 is the total number of contributing source points. 

 

𝑠(𝒙) =∑𝛾𝑖𝜑(‖𝒙 − 𝒙𝒌𝑖‖) + ℎ(𝒙)

𝑁

𝑖=1

 (1) 

 

The degree of the polynomial has to be chosen depending on the kind of radial function adopted. A 

radial basis fit exists if the coefficients 𝛾𝑖 and the weight of the polynomial can be found such that the 

desired function values are obtained at source points and the polynomial terms give zero contributions 

at source points, that is: 

 

𝑠(𝒙𝒌𝑖) = 𝒈𝑖 , 1 ≤ 𝑖 ≤ 𝑁 (2) 

∑𝛾𝑖𝑝(𝒙𝒌𝑖) = 0

𝑁

𝑖=1

 (3) 

 

for all polynomials 𝑝 with a degree less or equal than that of polynomial ℎ. The minimal degree of 

polynomial ℎ depends on the choice of the basis function. A unique interpolator exists if the basis 
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function is a conditionally positive definite function [1]. If the basis functions are conditionally positive 

definite of order 𝑚 ≤ 2 [2], a linear polynomial can be used: 

 

ℎ(𝒙) = 𝛽1 + 𝛽2𝑥 + 𝛽3𝑦 + 𝛽4𝑧 (4) 

 

The subsequent exposition assumes that the aforementioned hypothesis is valid. A consequence of using 

a linear polynomial is that rigid body translations are exactly recovered. The values for the coefficients 

𝛾 of RBF and the coefficients 𝛽 of the linear polynomial can be obtained by solving the system: 

 

(
𝑀 𝑃
𝑃𝑇 0

) (
𝛾
𝛽) = (

𝑔
0
) (5) 

 

where 𝑔 are the known values at the source points. 𝑀 is the interpolation matrix defined calculating all 

the radial interactions between source points: 

 

𝑀𝑖𝑗 = 𝜑 (‖𝒙𝒌𝑖 − 𝒙𝒌𝑗‖) , 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁 (6) 

 

and 𝑃 is a constraint matrix that arises balancing the polynomial contribution and contains a column of 

“1” and the 𝒙 𝒚 𝒛 positions of source points in the others three columns: 

 

𝑷 =

(

 

1 𝑥𝑘1 𝑦𝑘1 𝑧𝑘1
1 𝑥𝑘2 𝑦𝑘2 𝑧𝑘2
⋮ ⋮ ⋮ ⋮
1 𝑥𝑘𝑁 𝑦𝑘𝑁 𝑧𝑘𝑁)

  (7) 

 

Radial basis interpolation works for scalar fields. For the smoothing problem, each component of the 

displacement field prescribed at the source points is interpolated as follows: 

 

{

𝑠𝑥(𝒙) = ∑ 𝛾𝑖
𝑥𝜑(‖𝒙 − 𝒙𝒌𝑖‖) + 𝛽1

𝑥 + 𝛽2
𝑥𝑥 + 𝛽3

𝑥𝑦 + 𝛽4
𝑥𝑧 𝑁

𝑖=1

𝑠𝑦(𝒙) = ∑ 𝛾𝑖
𝑦
𝜑(‖𝒙 − 𝒙𝒌𝑖‖) + 𝛽1

𝑦
+ 𝛽2

𝑦
𝑥 + 𝛽3

𝑦
𝑦 + 𝛽4

𝑦
𝑧 𝑁

𝑖=1

𝑠𝑧(𝒙) = ∑ 𝛾𝑖
𝑧𝜑(‖𝒙 − 𝒙𝒌𝑖‖) + 𝛽1

𝑧 + 𝛽2
𝑧𝑥 + 𝛽3

𝑧𝑦 + 𝛽4
𝑧𝑧 𝑁

𝑖=1

  (8) 

 

Radial basis method has several advantages that makes it very attractive in the area of mesh smoothing. 

The key point is that, being a meshless method, only grid points are moved regardless of element 

connected and it is suitable for parallel implementation. In fact, once the solution is known and shared 

in the memory of each calculation node of the cluster, each partition has the ability to smooth its nodes 

without taking care of what happens outside because the smoother is a global point function and the 

continuity at interfaces is implicitly guaranteed. Furthermore, despite its meshless nature, the method is 

able to exactly prescribe known deformations onto the surface mesh: this effect is achieved by using all 

the mesh nodes as RBF centres with prescribed displacements, including the simple zero field to 

guarantee that a surface is left untouched by the morphing action 

4. LOAD MAPPING PROCEDURE 

Figure 1 sketches the typical workflow of a steady FSI analysis based on coupling RANS and FEM 

solvers (sometime also called as 2-ways approach) [3]. The principle is to iterate between the two 

computations updating, in a closed loop, each configuration (the geometry for the CFD and the external 

loads for the FEM analyses). The two-directional connection between the two numerical domains is 

performed by the tasks of loads mapping and CFD mesh updating. The loads mapping consists in 

transferring the loads computed from the cells faces adjacent to the wall surfaces of the CFD 

configuration (integrating pressure and wall stress) to the correspondent points of the structural 

numerical domain in a form of force vectors. The mesh update consists in adapting the CFD 
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computational domain to the geometry deformation estimated by the structural analysis. The latter task 

is very efficiently performed applying mesh morphing techniques. 

 

 
Figure 1: Workflow of a typical static CFD-CSM coupling procedure 

 

Mapping methods must fulfil several requirements:  

 accuracy - must be able to map vectors with minimum loss of modules and directions; 

 flexibility - must be able to handle dissimilar meshes including fine-to-coarse and coarse-to-fine; 

 performance - must be able to manage very large models in a reasonably short time. 

The load mapping problem between non matching meshes (Figure 2) can be solved applying several 

methods. A review about load transfer schemes can be found in [4] and [5]. Practical examples in which 

aeronautical meshes are considered are presented in [6]. In the RIBES project, an approach combining 

several features of existing methods (pointwise, area weighted averaging, mortar elements), is proposed. 

 

 
Figure 2: Example of mapping solutions thorough non-matching meshes 

 

The procedure consists in decomposing the original datasets in small RBF problems. The field, defined 

as a set of values at the corresponding centroids or nodes of the source mesh, is interpolated by RBF. In 

case of force vectors field, the three components are interpolated by three independent RBF solutions. 

The Partition Of Unity (POU) method [7] is used to organize the source and target point sets into 

overlapping subdomains. In each subdomain the interpolation problem is locally solved and the force 

field exchanged between the source subdomain and its target counterpart. We finally obtain a set of local 

solutions that, in order to recover the continuity of the field, have to be combined together by blending 

functions. The smoothness of the global solution can be guaranteed by a polynomial blending function 

which is obtained from a set of smooth functions 𝑊𝑖 by a normalization procedure: 

 

𝑤𝑖(𝑥) =
𝑊𝑖(𝑥)

∑ 𝑊𝑗(𝑥)𝑗
 (9) 

 

where the condition ∑𝑊𝑖 = 1 has to be satisfied. The weighting functions 𝑊𝑖 can be defined as the 

composition of a distance function 𝐷𝑖 and a decay function 𝑉𝑖. The distance function has to satisfy the 

condition 𝐷𝑖(𝑥) = 1 at the boundaries of a subdomain. 

The shape of a subdomain can be arbitrarily chosen. For boxes subdomains the distance function 

assumes the simplest form: 

𝐷(𝑥) = 1 − ∏
4(𝑥𝑟 − 𝑆𝑟)(𝑇𝑟 − 𝑥𝑟)

(𝑇𝑟 − 𝑆𝑟)
2

𝑟∈(𝑥,𝑦,𝑧)

 

 

(10) 
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where 𝑆 and 𝑇 are the opposite points on the diagonal of the volume. 

The forces on the target mesh nodes are obtained by multiplying the interpolated forces density field by 

the area (or volume for space fields) of the corresponding target cells. The error in the equilibrium 

between source and target field is related to this point and depends on the differences between the two 

discretization. A procedure able to smoothly recover the forces and moments equilibrium is then 

required. The goal is achieved introducing three corrective coefficients (one for each component along 

X, Y and Z) that locally force the equivalence between the resultants of the source and target subdomains 

(not necessarily equivalent to the subdomain used in the interpolation). The continuity and the smooth 

transition of the coefficients between the subdomains are obtained by overlapping them and by the 

adoption of blending functions with the same approach applied in the POU decomposition. 

Assuming two overlapped subdomains, indicated as 𝑖 and 𝑗, if the corrective coefficient set is constant 

within the same subdomain, the corrected resultants are obtained as: 

 

{
 
 

 
 𝑅𝑥 = 𝑐𝑥,𝑖∑𝐹𝑥,𝑖𝑤𝑖(𝑥) + 𝑐𝑥,𝑗∑𝐹𝑥,𝑗𝑤𝑗(𝑥)

𝑅𝑦 = 𝑐𝑦,𝑖∑𝐹𝑦,𝑖𝑤𝑖(𝑥) + 𝑐𝑦,𝑗∑𝐹𝑦,𝑗𝑤𝑗(𝑥)

𝑅𝑧 = 𝑐𝑧,𝑖∑𝐹𝑧,𝑖𝑤𝑖(𝑥) + 𝑐𝑧,𝑗∑𝐹𝑧,𝑗𝑤𝑗(𝑥)

 (11) 

 

where the weight functions 𝑤(𝑥) are the same previously described. 

The above formulations are valid for the computation of the homologous subdomain resultants if: 

 

𝑐𝑖 = {
1
1
1
};  𝑐𝑗 = {

1
1
1
} (12) 

 

This is due to the property that the blending functions sum identically sum to one, as mentioned above. 

The corrective coefficient for the selected subdomains are then expressed as: 

 

𝑐𝑥,𝑖 =
[∑𝐹𝑥,𝑖𝑤𝑖(𝑥)]𝑠𝑜𝑢𝑟𝑐𝑒

[∑𝐹𝑥,𝑖𝑤𝑖(𝑥)]𝑡𝑎𝑟𝑔𝑒𝑡
     𝑐𝑥,𝑗 =

[∑𝐹𝑥,𝑗𝑤𝑗(𝑥)]𝑠𝑜𝑢𝑟𝑐𝑒

[∑𝐹𝑥,𝑗𝑤𝑗(𝑥)]𝑡𝑎𝑟𝑔𝑒𝑡

 

𝑐𝑦,𝑖 =
[∑𝐹𝑦,𝑖𝑤𝑖(𝑥)]𝑠𝑜𝑢𝑟𝑐𝑒

[∑𝐹𝑦,𝑖𝑤𝑖(𝑥)]𝑡𝑎𝑟𝑔𝑒𝑡

     𝑐𝑦,𝑗 =
[∑𝐹𝑦,𝑗𝑤𝑗(𝑥)]𝑠𝑜𝑢𝑟𝑐𝑒

[∑𝐹𝑦,𝑗𝑤𝑗(𝑥)]𝑡𝑎𝑟𝑔𝑒𝑡

 

𝑐𝑧,𝑖 =
[∑𝐹𝑧,𝑖𝑤𝑖(𝑥)]𝑠𝑜𝑢𝑟𝑐𝑒

[∑𝐹𝑧,𝑖𝑤𝑖(𝑥)]𝑡𝑎𝑟𝑔𝑒𝑡
     𝑐𝑧,𝑗 =

[∑𝐹𝑧,𝑗𝑤𝑗(𝑥)]𝑠𝑜𝑢𝑟𝑐𝑒

[∑𝐹𝑧,𝑗𝑤𝑗(𝑥)]𝑡𝑎𝑟𝑔𝑒𝑡

 

(13) 

 

The reported correction is continuous and provides the mathematical equilibrium of local forces. It is 

then expected a low order of error on the moments. 

4.1. Assessment of the load mapping procedure 

The developed mapping procedure has been assessed using the HIRENASD (High Reynolds Number 

Aero-Structural Dynamics) test case. It consists in a half wing/fuselage wind tunnel model used in a 

workshop for aeroelastic numerical methods validation. Both CFD and FEM grids are then available. 

The static pressure field was mapped from the CFD wing surface grid to the wing structural FEM mesh. 

Table 2 reports the errors introduced by the interpolation process (without correction) between the two 

non-conformal domains. 

 

Table 2: Errors of interpolation between the two non-conformal domains 

𝑭𝒙 𝒆𝒓𝒓 % 𝑭𝒚 𝒆𝒓𝒓 % 𝑭𝒛 𝒆𝒓𝒓 % 𝑴𝒙 𝒆𝒓𝒓 % 𝑴𝒚 𝒆𝒓𝒓 % 𝑴𝒛 𝒆𝒓𝒓 % 

47.3 6.6 1.0 13.1 13.8 27.8 

 

The errors on forces and moments are significant especially on drag whose magnitude is in the order of 

20 times lower than the lift. 
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Figure 3 and Figure 4 reports respectively the locations of the subdomains, by the positions of their 

centroids, and the map of the computed global correction coefficients obtained as: 

 

√(𝑐𝑥𝐴𝑥)
2 + (𝑐𝑦𝐴𝑦)

2
+ (𝑐𝑧𝐴𝑧)

2

√𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2

 (14) 

 

with 𝐴𝑖 projected components of the nodal areas. 

Table 3 reports the errors on moments (errors on forces are zero for definition) obtained with the 

correction procedure above described. The errors are below 1% along all directions. 
 

 
Figure 3: Map of subdomains centroids 

 
Figure 4: Map of global correction 

coefficients  

 

Table 3: Errors of corrected interpolation 

𝑴𝒙 𝒆𝒓𝒓 % 𝑴𝒚 𝒆𝒓𝒓 % 𝑴𝒛 𝒆𝒓𝒓 % 

0.8 0.11 0.38 

5. EXPERIMENTAL CAMPAIGN 

The accuracy of the developed load transfer numerical tools needs to be validated against a case of 

aeronautical interest. Such a test case should accomplish the task of being significant for a realistic 

design problem and of being suitable to be experimentally verified in a low speed wind tunnel (in order 

to contain the costs). The two objectives are conflicting in several practical aspects. An opportune 

compromise has then to be selected. The first requirement is accomplished developing a typical wing 

box structure referring to a realistic aircraft. The latter is achieved by an opportune aerodynamic design 

aimed to replicate as much as possible, at wind tunnel conditions, a realistic reference aircraft target 

load distribution. 

In order to maximize the interaction between aerodynamic loads and wing deformation, a swept back 

wing is adopted2. Furthermore, to maximize the load similitude with a scaled wing model to be tested 

in a typical low speed facility, a relatively low wing load case has to be selected. With this vision, the 

wing is supposed to refer to a geometry suitable for an ultra-light jet class aircraft (Figure 5) whose 

possible realistic dimensions and performances are reported in Table 4. 

The cruising lift coefficient is assumed to be 0.25. The relatively low Reynolds number allows adopting 

a laminar wing (the cruising Reynolds number is lower than 6 millions) whose pressure distribution 

should exhibit, for stability reasons, a slight favourable pressure gradient chordwise [9]. To not penalize 

the MMO conditions (maximum operating Mach number) the pressure recover should begin no later 

than 50-60% of the chord. Assuming a linear wing twist of 6 degree, the maximum section lift coefficient 

will be close to 0.4 in the inner region of the wing. 

 

                                                      
2 The sweep angle introduces a coupling between aerodynamics and structural response because the deflection of 

the wing generates an aerodynamic twist variation [8]. 
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Figure 5: Reference aircraft configuration 

Table 4: Reference aircraft data 

Wing span 9.5 m 

Reference wing surface 12 m2 

MTOW 2160 Kg 

Service ceiling 41.000 ft 

Cruise Mach number 0.75 

 

 

 

Figure 6 reports a realistic target spanwise dimensionless (with root chord) load distribution and Figure 

7 reports a typical transonic laminar airfoil target pressure distribution in cruising conditions. The wind 

tunnel model should be aerodynamically designed to replicate as much as possible these load shapes. 

 

 
Figure 6: Spanwise load distribution 

 
Figure 7: Laminar airfoil pressure distribution 

5.1. Wing model design 

A complete structural and load similitude at testing conditions would require a relatively high speed 

which is not compatible with a typical not pressurized low speed wind tunnel with a sufficient large test 

section3. The previously mentioned design compromise consists in accepting a lower model wing load, 

respect to the full-scale geometry, maintaining the similitude in the shape of the surface load distribution. 

The chosen scale of the model is 1:2.5 to which corresponds a span of 1.6 meters. Figure 8 and Table 5 

detail the model geometry and its dimensions. Applying preliminary design methods [10], a total load 

of 45 Kg is expected to be generated at 40 m/s (Mach 0.12) with a lift coefficient close to 0.6 and a 

Reynolds number, referred to the model MAC (Mean Aerodynamic Chord), of 1.4 million. Such lift 

value correspond to a wing load of 60 Kg/m2 which is approximately one fourth of the reference aircraft 

wing load. 

 

 
Figure 8: Wind tunnel model surface 

Table 5: Model dimensions 

Model scale 1:2.5 

Span 1600 mm 

Reference surface 0.754 m2 

MAC 495 mm 

Root chord 653 mm 

Tip chord 288 mm 

Root thickness 85 mm 

Tip thickness 29 mm 

LE sweep angle 20° 
 

  

                                                      
3 The speed required to generate a similar scaled load on a model with a span smaller than 2 meter, assuming the 

same full-scale aircraft wing load and design cruising lift coefficient, would be higher than Mach 0.3. 

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

CL

Adimensional wing span 

Elliptic load

Cl

cCl

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.5 1

Cp

x/c



44° CONVEGNO NAZIONALE – MESSINA, 2-5 SETTEMBRE 2015 

 

The wing will be installed on the side wall of the test section as a cantilever. The wet surface is generated 

by a loft built around the root and the tip airfoils. A single curvature surface is then generated. The two 

sections were aerodynamically designed to let the wing generate a load shape distribution, at low speed 

(Figure 9), similar to the typical pressure distribution generated by a laminar transonic wing in cruise 

conditions (Figure 7) but with a wing target 3D lift coefficient of 0.6. In the inner region, a local section 

Cl value of around 0.7 is then generated. Table 6 reports the target design point of the wind tunnel model 

and its thickness constraints. 

 

 
Figure 9: Target model section low speed pressure 

distribution 

Table 6: Wind tunnel model targets of design 

Design speed 40 m/s 

Lift coefficient 0.6 

Angle of attach 2° 

Tip section thickness 10%c 

Root section thickness 13%c 
 

 

The model reproduces a typical metal aeronautical wing structure. The wing box is composed by two 

spars, at 10% and at 60% of the chord, and by ribs equally spaced (Figure 10). The external skin is 

divided into three parts: an upper, a lower and a leading edge panel. The lower panel is supposed to be 

joint by screws to allow an easy inspection of the internal installations while the other parts will be 

assembled by rivets. 

 

 
 

Figure 10: Structure of the wind tunnel model 

 

Two lines of pressure taps will be installed at the 30% and at 70% of the model span. A number of 40 

are planned to be located at the inner station, 25 at the outer and 15 spanwise on both upper and lower 

surface. Strain gauges will be positioned at several points on skin, spars and ribs in the most significant 

locations identified by the FEM analysis. 

5.2. Wind tunnel tests 

The wind tunnel tests will be performed in the facility of the university “Federico II” in Naples. It is a 

closed tunnel with a test section 2 meter wide and a maximum airflow speed of 45 m/s. It is equipped 

with balances whose measurement limits are 100 Kg for the lift and 20 Kg for the drag. The test matrix 

will cover a speed range from 35 to 45 m/s. Transition trips will be located at 5% of the chord on both 

sides of the model in order to guarantee a fully turbulent boundary layer and to reduce risks of separation. 

Lift, drag and pressure will be measured. Strain gauges measurements and deformation visualization 

will be reported at the most significant polar points. In order to verify if separations occur one polar will 

be measured applying mini tufts on the upper surface (Figure 11). 

The model deformation will be evaluated, at the most significant test conditions, by photogrammetry 

techniques. The principle is to obtain a stereoscopic visualization by taking a couple of images 
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simultaneously using two cameras installed with different angle respect to the model [11]. The 3D 

geometric reconstruction process consists in recognizing the position of a matrix of markers, 

opportunely placed on the model surface, by the visual 3D evaluation of the displacement of this discrete 

number of points respect to their known static positions. The 3D coordinates of the points, in an absolute 

frame, are derived from their 2D location in the images according to the principle that every points are 

projected onto a particular point in the camera sensor plane and has to lie on a straight line (Figure 12). 

 

 
Figure 11: Mini tufts for flow visualization 

 
Figure 12: Principle of stereoscopic visualization 

5.3. Preliminary CFD solutions 

A set of preliminary CFD computations has been performed in order to verify the wing aerodynamic 

characteristics and to provide the load distribution required for the structural dimensioning. The fluid 

dynamic domain reproduced the tunnel test section including the inlet convergence element (Figure 13). 

The mesh was composed by 3.5 million of hexahedral elements. The boundary layer was solved up to 

the wall of the wing model while a wall function was applied to the tunnel walls. The complete fully 

turbulent polar was computed at the maximum velocity of 45 m/s to which correspond Mach 0.132 and 

Re 1.52 million (Figure 14). The wing is estimated to stall at 12 degree of incidence. The maximum lift 

conditions measurable by the balance occurs at around five degree of incidence in a region in which the 

lift polar is still linear. 

 

 
Figure 13: CFD domain reproducing the wind tunnel 

 
Figure 14: Computed wing lift curve 

6. STRUCTURAL OPTIMIZATION ENVIRONMENT 

Structural optimization is a strategic topic in aircraft design. The weight reduction is directly connected 

to the performances improvement and to the “green” behaviour of the machine. The safety margins, in 

particularly, play the leading role. The challenge is to acquire a total confidence on the numerical tools 

so to be able to move its values toward the unity all over the whole structure. Numerical optimizations 

coupled to structural analysis codes represent key strategies to get closer to this target. 

The procedure developed in the RIBES project is based on routines that manage the geometric 

parameters, update the model, perform the FEM analysis and drive the optimization. The optimum 

selection criterion is based on filling a DOE (Design Of Experiment) table, in selecting the design points 

with the Latin hypercube sampling method [12], and on the application of a Response Surface (RS) on 
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which to apply the search algorithm. One of the most efficient approach, for the RS evaluation, is the 

Kriging method and the RBF interpolation [13]. The University of Rome “Tor Vergata” developed a 

Response Surface metamodel based on the Radial Basis Functions using various kernels. 

The possibility to perform both a shape and thickness optimization was implemented by two different 

strategies. Thickness is introduced as variable of design directly taking the control of the bulk data file 

by the management of the property label in the ASCII file (Figure 15). 

 

 
Figure 15: Bulk data file 

 

The shape change is applied to the topology directly on the numerical domain by mesh morphing 

techniques (Figure 16). The main advantages respect a CAD driven procedure are that no remesh is 

required (ensuring higher robustness) and the grid topology is maintained unchanged (no further 

uncertainness are introduced). The drawback is that a back-to-CAD procedure is required at the end of 

the optimization process. With mesh morphing, new shapes are generated by deforming the baseline 

mesh updating the nodal positions according to the prescribed geometric modification. Several 

algorithms have been explored for this task [14] [15]. One of the most efficient, which combines the 

benefits of a meshless method with a great precision, is based on the use of Radial Basis Functions 

interpolation [16] [17]. An additional advantage is that the RBF computation can be highly 

parallelizable. The process is then suitable to be implemented on HPC environment to manage very 

large computational domains. The first industrial implementation of RBF mesh morphing was 

introduced in 2009 with the software RBF Morph [18] (examples of applications can be found in [19]). 

The mesh morphing algorithm implemented in the RIBES software is based on its kernel. 

 

 
Figure 16: Example of shape parameterization based on mesh morphing 

 

The shape modification is applied to the computational domain as a linear combination of vectors 

belonging to the FEM model nodal positions space. 

 

𝑋𝐹𝐸𝑀 = 𝑋𝐹𝐸𝑀0 + ∑ 𝜂𝑠𝛿𝑋𝑠

𝑛𝑠ℎ𝑎𝑝𝑒𝑠

𝑠=1

 (15) 

 

The morphed FEM mesh is defined summing to the original grid nodes the displacements 𝛿𝑋𝑠 amplified 

by the shape parameters 𝜂𝑠. According to eq. (15) the optimization process is a shape optimizer that has 

the capability to involve parameters defined by the user and implemented in the setup of the model. 

The complete workflow of the structural optimization procedure is sketched in Figure 17. The automatic 

process is included in the dashed frame while the external blocks indicate the setup activities that have 

to be performed in advance. E set of scripts routines drive the computation, extracts the solutions, 

formulate the objective functions, update the FEM setup according to the selected design point, complete 

the DOE table, compute the Response Surface and apply the single or multi objective search algorithm 

to find the optimum or the Pareto solution. The parameters that is possible to extract to be used to 
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compute the objective functions and/or implement constraints are the maximum stress, the maximum 

displacement (for the entire structure or for each property of the model) and the total mass of the 

structure. 

 

 
Figure 17: Optimization workflow 

6.1. Procedure application on the test article 

The wing structure developed for the wind tunnel test (Figure 10) and described in the previous 

paragraph was used as a test case to verify the optimization procedure. A two-objective optimization 

involving sheet metal thickness and rear spar caps shape was performed. The objective functions were 

the maximum stress and the total mass. Table 7 lists the six implemented variables of design. Two shape 

modifier factors were applied to the rear spar caps: a constant width variation and a linear tapering 

(Figure 18). 

 

Table 7: Design variables 

Skin thickness 

Rear spar thickness 

Front spar thickness 

Ribs thickness 

Rear spar caps tapering 

Rear spar caps width 
 

 
Figure 18: Spar caps shape modifiers 

 

The DOE table was populated with 120 solutions. Figure 19 reports the Pareto frontier obtained. The 

optimum solution was chosen with the vision of significantly gain in terms of safety margins accepting 

a weight increment also respect to the baseline solution. Figure 20 compares the maximum stress 

obtained on the baseline configuration with the values obtained on the selected optimized structure 

configuration. 

 

 
Figure 19: Pareto solution of the wing structure optimization 
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Figure 20: Maximum stress comparison between baseline and selected optimized solution 

7. CONCLUSIONS 

An overview of the activities performed within the “RIBES” EU research project, led by the University 

of Rome “Tor Vergata” and funded within the 7th framework aeronautics programme, was provided. 

Partners of research are the RBF Morph™ (www.rbf-morph.com) software vendor and the aerospace 

consulting engineering firm Design Methods™ (www.designmethods.aero). The project is aimed to the 

development of an accurate load mapping procedure suitable for Fluid Structure Interaction (FSI) 

analysis methods based on CFD-CSM coupling, to the setup of a shape structural optimization procedure 

and on the definition of an experimental campaign expressly customized for the validation of the 

software developed within the project. 

An innovative mapping procedure, based on Radial Basis Functions, was implemented introducing 

corrective coefficients that smoothly recover the forces and moments equilibrium forcing the 

equivalence between the resultants of the source and target domains. The procedure was tested mapping 

the static pressure field from the CFD wing surface grid to the structural FEM mesh of the HIRENASD 

test case. The performances deriving from the application of the developed corrective factors were 

demonstrated by the reduction below 1% of the errors, introduced by the interpolation process between 

the two non-conformal domains, in the computation of the global moments. 

The experimental campaign was setup with the requirement of being representative of a typical 

aeronautical wing structure. A half wing model, composed by ribs, spars and skin to be joint by rivets, 

was designed referring to an ultra-light jet class aircraft. The model will be equipped with pressure taps 

and strain gauges and will be tested in a non-pressurized low speed wind tunnel. The model deformation 

will be measure applying photogrammetry techniques. 

A structural optimization procedure was developed by integrating a structural solver in a numerical 

optimization environment. A shape parameterization, based on RBF mesh morphing techniques, and a 

thickness control, was included in the procedure to be used as variables of design. The optimization 

criterion is based on filling a DOE table and on the computation of a Response Surface. The performance 

of the tool was demonstrated optimizing the wing structure designed for the experimental campaign. 
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