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“For every complex problem there is a simple
solution, and it is the wrong one.”

“Per ogni problema complesso esiste una soluzione
semplice, ed è quella sbagliata.”

George Bernard Shaw





Preface

T
he bases of the work here presented refer to a collaboration between the uni-
versity of Rome “Tor Vergata” and the aircraft industry Piaggio Aerospace that
began in 2009 and was aimed to the implementation of a CFD-CSM aeroelastic

analysis procedure coupling the solvers in use in the company, CFD++ for fluid dy-
namic and Nastran for structural analysis, by using the RBF Morph mesh morphing
software as a link between the two environments. At that time RBF Morph was a novel
solution, just appeared on the market, integrated as an add-on in the ANSYS Fluent
solver. The task was then to verify its feasibility in implementing an FSI workflow out-
side the ANSYS environment and to test the efficiency of RBF mesh morphing as a cou-
pling method for high fidelity aeroelastic analyses. It was one of the first steps in the
development of the stand-alone tool that today is ready to be integrated with several
solvers and that was, in recent years, the core technology of several European research
programmes. Two EU aeronautics projects in particular (RBF4AERO and RIBES), con-
stituted the developing framework of a technology platform aimed to extend the RBF
mesh morphing application to problems ranging from shape optimization, ice accre-
tion and FSI analyses involving commercial and open source tools. Within the RIBES
project, furthermore, an experimental wing tunnel tests campaign for FSI numerical
methods validation, aimed to cover aspects that are currently poorly covered by test
cases available in literature, was setup and completed. The work here reported was
developed, and funded, within this two projects.

Aim of this thesis is to demonstrate the capability of RBF mesh morphing to en-
hance the development of efficient high fidelity FSI analyses procedures by a 2-way
and a modal superposition approach. The two methodologies are described detail-
ing coupling procedures and workflows implementations. The quality of their solu-
tions was assessed against two static experimental test cases: a complete aircraft model
tested in transonic conditions (provided by Piaggio Aerospace) and the RIBESwind tun-
nel model consisting in a typical metal wing box equipped with a set of strain gauges
able to provide the actual stress state of the wing under aerodynamic loads.

Ubaldo Cella

Messina, Italy
January 2017
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1
Introduction

A
eroelasticity is the subject that describes the interaction of aerodynamic, in-
ertia and elastic forces for a flexible structure. A first schematic relation be-
tween the type of forces and the disciplines involved in the mechanism was

proposed by Collar in 1946 with its well known Triangle of Forces [1]. In a more gen-
eral view, aeroelastic phenomena are usually classified in two main categories: static
and dynamic. Static aeroelasticity considers the non-oscillatory effects of aerodynamic
forces (independent of time) acting on flexible structures. Dynamic aeroelasticity is
concerned with the oscillatory effects of the aeroelastic interactions.

In aerospace engineering, the flexibility of structures plays a crucial role in several
aspects of aircraft design processes [2]. In static conditions, the flexibility of the wing
involves a direct coupling between structural deformations and aerodynamic forces.
This mechanism causes a geometric shape modification of lifting surfaces under load
with a consequent variation of lift distribution that leads to different static equilibri-
ums for every steady flight condition. The capability to evaluate such interaction is
important to avoid drag penalties in design conditions. The typical case of interest
is the relationship between the so-called “jig shape” (the shape of the structure when
supported in the jigs during manufacture) and “flying shape” (the shape that it will
assume in the real in-flight conditions). For a theoretical rigid wing there would be no
difference between the two shapes. For real structures the elastic deformation under
aerodynamic loads causes the aircraft to exhibit performances that differ from what is
expected assuming a rigid structure. If large wing bending occurs, for example, a high
dihedral angle might be generated affecting also the aircraft lateral stability.

Static aero-structural interaction evaluation is also essential to account for potential
influences on the effectiveness of control surfaces, aircraft trim behaviour and stabil-
ity/control characteristics. It is, furthermore, crucial to account for two potentially
dangerous phenomena: divergence and control reversal. The first occurs when the mo-
ments due to aerodynamic forces overcome the restoring moments due to structural
stiffness, so resulting in risks of structural failure1. The latter affects the control system

1Typical examples are forward swept wings (with a traditional wing box structure) in which the

1



1 Introduction 2

Figure 1.1: In-flight shape of Boeing 787 Dreamliner wing under load (courtesy of ©Boeing).

and occurs at speed conditions higher than a so called reversal speed. It is determined
by the generation of a moment, induced by the action on the control surface, that is
higher than the structural torsional response of the wing box. At reversal speed, the
pitching moment of the wing is exactly cancelled out by the pitching moment gener-
ated by the action of the control surface [3]. At higher velocities the wing generates
forces in the opposite direction respect to the direction expected by the action on the
control surface causing a reversal operation of the command (e.g. to a pull up action
on the command corresponds a diving response).

The link between aeroelasticity and loads is extended to the dynamic response of
structures under steady and unsteady aerodynamic forces. The loads, resulting from
flight manoeuvres, air gust or turbulence, interact with the aircraft vibration character-
istics generating dynamic inertial and elastic forces. At some critical speeds, external
air flow disturbances might trigger an unstable self-excited vibration in which a mode
structure oscillation becomes negatively damped. Such phenomenon is called flutter.
The unsteady nature of the aerodynamic forces and moments generated when the air-
craft oscillates renders the prediction of the flutter mechanism a particular challenging
task, especially in transonic regimes. The main area of interest of dynamic aeroelastic-
ity is the study of such potentially catastrophic phenomena.

Another mechanism that is important to account for, particularly in highly flexible
aircrafts subjected to large deformations, is the interaction between the aircraft vibra-
tion modes and the flight control system (FCS). This coupling represents a closed loop
that affects both the aeroelastic and loads behaviour and can involve unfavourable in-
teraction that might seriously degrade the control system efficiency [4]. The discipline
that study such a mechanism is called aeroservoelasticity.

1.1 The Fluid Structure Interaction (FSI) problem

The history of aeronautics is dominated, from the early begin, by the phenomenon of
aeroelasticity although it was still completely unknown to the pioneers of aviation. As
often happens in many fields of engineering, the effort in deepening the investigation
of an emerging phenomenon is motivated by the fear of potential damage or, in the
worst case, as consequence of catastrophic events. The evolution of aviation is, un-

effect of bending under load produces an increase in the local angle of attack that further increments
the aerodynamic loading.

Ubaldo Cella



1 Introduction 3

fortunately, marked along its path by several disasters that, on the other hand, signed
some of the major improvements in its technology. The moment at which engineers
began to fair the effects of structures flexibility is probably associated to the in-flight
wing box (dramatic) failure of the Fokker D.VIII during the First World War2. The
importance of an interdisciplinary design approach in aircrafts design became then
evident very soon. Aerodynamic design and aeroelasticity have been, however, histor-
ically treated separately in industry up to recent years. The aeroelastic verification was
often demanded to the final stage of the design process or adopted to face problems
appeared during flight testing. The problems were traditionally solved by stiffening
the structure and/or by masses balancing.

Figure 1.2: Fokker D.VIII (source Wikipedia).

Amilestone in the development of numerical tools to study aeroelastic problems is
represented by the Theodorsen’s flutter theory (1935) [6]. The experimental support
to the validation of analytical methods progressed in parallel. The first wind tunnel
constructed for exclusive use in flutter research became operational at NACA Langley
Research Centre in 1945 [7].

The year 1965 is considered as the begin of the Computational Fluid Dynamics era
[8]. The adoption of Vortex Lattice Method, during 1960s, made it possible to begin
to model the aeroelastic behaviour of aircrafts in complete configuration [9]. Today
several methods are available for every stage of aircrafts design process. In [10] a
review of numerical techniques to face FSI problems and an extended reference list
are provided and discussed. One of the classical approach involves the modal and the
influence coefficient techniques, valid for attached flows and for aerodynamic loads
in phase with the deformations [11]. Linear aerodynamic methods, as doublet-lattice
[12] provide a robust approach for unsteady aerodynamics although simpler models,
based on strip theory and indicial functions, are widely used at conceptual levels [13].

2The army technical bureau requested a modification to the original design imposing to reinforce the
rear spar with proportional strength capacity to the front spar. This redistribution of stiffness caused a
torsional divergence under flight loads [5].

Ubaldo Cella



1 Introduction 4

The latter approaches are computationally inexpensive but neglect 3D flow physics (as
wing-tip vortices and aerodynamic interference between wake and bodies). Where the
linear assumption is not valid, as in transonic regimes or if large deformation occurs,
corrections based on CFD or test results can be applied [14]. A set of examples, in
which non-linear problems were solved implementing a FEM model of solid isotropic
thin-walled structures within a RANS solver, are provided in [15].

The use of RANS solvers for steady and unsteady aeroelastic simulations have sig-
nificantly increased in recent years and represents today the most accurate approach.
In [16] a fully non-linear unsteady FSI procedure, that couples the Y3D deformable
solid model finite-discrete element code with an adaptive finite element CFD solver
based on the open-source Fluidity code, is proposed. Other examples of its application
to multiphase fluid problems, involving free surface and floating bodies, are presented
in [17]. The relatively expensive computational requirements of RANS methods con-
stitutes, however, the main limitation to their adoption in more demanding applica-
tions (e.g. in modelling complex dynamic systems and/or in the integration within
numerical optimization environments). In such cases Reduced Order Models (ROM)
can be used in place of RANS solutions to lower the computational burden. ROMs use
some limited results of high fidelity simulation models to provide a simpler mathe-
matical representation of the physical phenomenon to be examined [18]. The aim is to
be able to capture the most relevant behaviour of the system reducing its number of
degrees of freedom (for this reason they are often also called “low dimensional models”
[19]) thus providing a faster and computationally cheaper aeroelastic model.

In the present work we focus the attention on high fidelity methods and in partic-
ular on the crucial aspects related to the numerical coupling between fluid dynamic
and structural solutions.

1.1.1 High fidelity approach for FSI

“High fidelity” simulations mimic the physics of phenomena with a greater accuracy
with respect to “low fidelity” simulations. This higher accuracy has a cost. The confi-
dence on such cost, on methods accuracy and on the balance between these two qual-
ities, is important to proper select the opportune numerical tool with respect to the
stage of the design process [20]. The possibility to adopt high fidelity analyses in ear-
lier stages of aircrafts design provides the possibility to limit the uncertainness to be
expected in the test phase and helps to reduce the time to market of the product [21].

The state of the art in FSI analysis numerical methods consists in approaching the
problem coupling RANS codes with FEM solvers. The critical point relates to the strat-
egy to be adopted in implementing the exchange of information between the two envi-
ronments. In this work two static analysis methods, based on the use of CFD and FEM
solvers, are proposed. The first couples the two solvers in the so called “2-way” proce-
dure in which the aerodynamic solution, in terms of forces acting on wet surfaces, and
the geometric displacement of the structure under load, are iteratively exchanged be-
tween the codes up to the convergence to an equilibrated static condition. The second
method is based on the implementation of an intrinsically aeroelastic CFD configu-
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1 Introduction 5

ration in which the FEM solver is used to extract the vibrating modal shapes of the
structure that are used to implement a parametric CFD domain.

2-way FSI analysis

The implementation of CFD-CSM (Computational Fluid Dynamic - Computational
Structural Mechanics), or 2-way FSI procedures, might be quite complex and solver-
dependent. The codes coupling requires several actions: solutions extraction, files
format conversion, setup update, run management, solutions quality check, etc. If the
analysis has to be included in an optimization loop, routines controlling the procedure
in an automatic process have to be implemented. The main issues, however, are related
to the efficient and accurate bidirectional coupling of the aerodynamic and the struc-
tural solution. Two technical aspects are particular awkward: the transfer of the CFD
solution, in form of loads, to the FEM model and the adaptation of the CFD domain
according to the displacement estimated by the FEM analysis.

CFD to FEM - Fluid dynamic and finite elements methods solve different regions gener-
ated with different discretization criteria that, in general, do not match on the com-
mon boundaries (the wet surfaces). The two solutions (structure displacements and
aerodynamic loads) are then distributed on non-matching clouds of points belong-
ing to common boundaries for which the mathematical definition of the surfaces is
missing. An interpolation of solutions between the domains is then required. Dur-
ing the mapping process of the CFD aerodynamic forces (surface pressure and shear
stresses) as loads into the FEM model, an error is, in general, introduced.

FEM to CFD - The computed structural displacement has to be used back in the CFD
solver to close the 2-way loop. The adaptation of the fluid dynamic domain to the
deformed shape (an action that has to be performed for every cycle of aerodynamic
loads evaluation) is efficiently approached by mesh morphing techniques. Such pro-
cess can degrade the quality of the computational grid and requires efficient algo-
rithms.

Modal FSI analysis

The idea at the base of the adoption of the modal approach for FSI analysis is the
simplifying assumption that the displacement of the geometry under the aerodynamic
loads can be replicated by a combination of a limited number of structural natural
modal shapes. The implementation of ”modal superposition” FSI methods begins then
with a preliminary structural modal analysis of the object under investigation. This
action is performed only once and no further involvement of FEM solvers is required.
The aim is to avoid the iteration between CFD and FEM analysis by the development of
a fluid dynamic model that, with an opportune parametrization of the mesh, becomes
intrinsically aeroelastic. The elasticity effect is taken into account directly within the
CFD environment using a basis of structural modal shapes whose combination is used
as target shape to deform the mesh. Applying the modal approach many of the com-
plexities related to the CFD-CSM implementation, with the exception of the domain
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1 Introduction 6

adaptation problemwhose awkwardness remains unchangedwith respect to the 2-way
FSI coupling, are then bypassed. Furthermore the possibility of retaining the geomet-
ric adaptation within the progress of the CFD computation, in conjunction with the
possibility of controlling the mesh update frequency, supports the improvement of
robustness and efficiency of the procedure. The latter aspect assumes significant rele-
vance when dealing with the setup of automatic procedures.

Mesh Morphing Method

The problem of efficiently updating numerical domains acquires particular impor-
tance, beside FSI analyses, with the modern tendency of addressing engineering de-
sign problems by implementing multidisciplinary shape optimization (MDO) envi-
ronments. Mesh morphing tools are, in fact, excellent candidates to perform shape
parameterization [22].

Morphing is the ability to change one thing into another smoothly. Mesh morphing is, in a
discretized numerical representation, the action of changing the shape of a meshed domain
while preserving the topology.

Several techniques to approach this task, mainly based on the free-form deforma-
tion (FFD) [23] and the elastic models [24], are proposed in both research and com-
mercial codes. Radial basis functions (RBFs) have become a well-established tool to
interpolate scattered data [25] and are considered one of the most efficient mathemat-
ical framework to face the problem of mesh morphing. RBF morphing strategy is the
one adopted for updating the fluid dynamic computational domain in both 2-way and
modal FSI analysis procedures proposed in this work.

Figure 1.3: Behaviour of mesh morphing.

RBFs have been successfully applied in many research and academic activities. An
example of the great potentialities of RBFs for mesh morphing is reported in [26] with
an application on the parametrization and optimization of the shape of a wing. The
ability to embed structural modes into a CFD model for transient coupled CFD anal-
yses using RBFs has been proven by van Zuijlen et al. [27] on the AGARD 445.6 wing
test case.
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The first commercial mesh morphing tool based on radial basis functions was RBF
Morph3. It was first developed as an on-demand module for a Formula 1 top team and
then placed on the market as an add-on for the CFD solver ANSYS Fluent [28]. The
code proved its efficiency in several aerospace [29] and non aerospace applications [30,
31]. A comprehensive description of the theory behind the tool and further examples
of its application are given in [32]. RBF Morph is the tool used in the implementation
of the CFD domain adaptation tasks performed in the FSI methodologies described in
this work. The structural analyses were performed using FEMAP/NX Nastran while
the fluid dynamic solutions were obtained by ANSYS Fluent.

1.2 Research contest of the work

The work here presented was developed (and funded) within the RBF4AERO and
RIBES EU research projects, focused on aeronautical technologies, in which the uni-
versity of Rome “Tor Vergata” was involved.

Figure 1.4: Logos of the framework research projects.

Object of RBF4AERO4 was the development of a benchmark technology numerical
platform for aircrafts design setting up methodologies based on RBF mesh morphing
techniques [33]. The platform enables to solve relevant aircrafts design problems as
FSI analysis [34], icing growth [35] and shape optimization combining adjoint and
evolutionary based algorithms (EAs) [36, 37]. RBF4AERO was concluded November
2016.

The main topic of the RIBES5 project was the reduction of the uncertainness in the
CFD-CSM aeroelastic analysis numerical methodologies [38]. In addition, the project
was addressed to the implementation of an RBF based workflow for shape structural
optimization and to the experimental validation of FSI methodologies.

3www.rbf-morph.com
4RBF4AERO (www.rbf4aero.eu) was partially funded by the European Union 7th Framework Pro-

gramme (FP7-AAT, 20072013) under Grant Agreement no. 605396.
5The RIBES project (www.ribes-project.eu) was led by the university of Rome “Tor Vergata” and

was funded within the EU 7th FP programme by the aeronautics programme JTI-CS-GRA (Joint Tech-
nology Initiatives - Clean Sky - Green Regional Aircraft) under Grant Agreement no. 632556.
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The topics of the RIBES project were:

1. the development of an accurate and efficient load mapping procedure to transfer
solutions from fluid dynamic to structural solvers;

2. the implementation of a structural shape optimization tool;

3. the setup of an aeroelastic experimental campaign for FSI methodologies validation
purposes.

A significant part of the budget was allocated on the setup of the wind tunnel ex-
perimental campaign. In this task an extensive sets of aeroelastic measurements, us-
ing an opportunely designed wingmodel with a typical metallic aeronautical wing box
structure, was performed. The RIBES project was officially completed December 2016.

1.3 Validation of static aeroelastic analyses

The 2-way and the modal approaches to face the FSI problem previously introduced
were implemented and validated against two proprietary aeronautical experimental
test cases in static conditions. This document details the implemented methods, de-
scribes the adopted validation procedures and highlights the solutions of the assess-
ments by a deep analysis of the experimental comparisons.

The test cases used for validation refer both to aircraft wings but have different
characteristics. The first consists of a transonic wind tunnel model of an aircraft, in
complete configuration, for which pressure and forces measurements are available in
several conditions around the cruising Mach number. It refers to a program carried
out by Piaggio Aerospace and was the base of a collaboration with the University of
Rome “Tor Vergata” that began in 2009 and continued as a partnership within the
RBF4AERO project. Its swept back wing configuration offers the possibility to asses
the capability of the numerical methods to capture the coupling mechanism between
aerodynamic performance and structural deformation. This assessment is than mainly
addressed on the aerodynamic verification. The second test case refers to a half wing
wind tunnel model, developed within the RIBES project by the University of Rome
“Tor Vergata” in collaboration with the University of Naples “Federico II”, that repli-
cates a traditional metal wing box structure. No sweep angle is present, in this case, so
no significant aerodynamic performance variation due to deformation is expected. The
test case was expressly setup to provide a base of assessment for the elastic response of
the structure. It is, in fact, instrumented with a set of strain gauges located in several
points of the wing box structure.

Both comparisons are aimed to the absolute quantification of the accuracy of the
2-way method and to give the sensitivity on how the modal modelling represents a
reasonable and practicable simplification in terms of estimation of geometric defor-
mations.
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2
Theoretical background

T
he aeroelastic methods here described approach the problem by coupling CFD
and FEM solvers and by implementing a modal based FSI analysis within the
fluid dynamic environment. In the CFD-CSM coupling, the module used to

transfer the loads from the fluid dynamic solution to the finite element domain consists
in a procedure implemented within the RIBES project. The modal approach is based
on a preliminary structural modal analysis from which a number of natural modes are
selected to be used in the creation of a parametric representation of the fluid dynamic
domain. In both 2-way and modal methods, the CFD grid modification problem is
solved adopting a mesh morphing tool based on Radial Basis Functions. A brief review
of theoretical backgrounds on the Radial Basis Functions mathematical framework,
a synthesis on structural modal analysis basics and a description of the RIBES load
mapping procedure will be following provided.

2.1 Radial Basis Functions

Radial Basis Functions were born as interpolation methods for scattered data. They
are very powerful tools able to interpolate, everywhere in the space, a function de-
fined by discrete points [39, 40]. They are efficiently used to produce a mesh move-
ment/morphing (for both surface shape changes and volume mesh smoothing) from a
list of source points and their displacements1.

The interpolating function S composed by RBFs, defining the motion of an arbi-
trary point inside or outside a domain (interpolation/extrapolation), is expressed as
the linear combination of the radial contribution of each source point (if the point falls
inside the domain of influence) by

S(x) =
N
∑

i=1

ηiϕ (‖ x − xi ‖) + h(x)

1RBF can be used to fit scalar functions defined in a generic n-dimensional spaces providing a very
effective interpolation tool for the evaluation, for instance, of Response Surfaces.

9



2 Theoretical background 10

where

• ϕ is the selected interpolating radial basis;

• N is the total number of contributing source points (also called centres);

• xi = {xi ,yi , zi } is the vector of source points positions;

• ηi = {η1, . . . ,ηN }T is a vector of unknown coefficients;

• h is a correction polynomial.

The correction polynomial h has orderm−1, wherem is the order of the radial basis
ϕ. It is required to guarantee the uniqueness of the solution and the ability to execute
rigid motions. The Euclidean distance between two points r =‖ x − xi ‖ is defined in
a generic n-dimensional space (n = 2,3 for surface or volume mesh morphing appli-
cations). The radial contribution of each source point is specified without any special
assumptions on their number or geometric position. This characteristic renders the
formulation “meshless”.

A linear system (of order equal to the number of source points introduced) needs
to be solved for the calculation of coefficients ηi . A radial basis fit exists if the coeffi-
cients and the weights of the polynomial h can be found such that the two following
conditions are satisfied:

1. the value of S(xi) assumes the desired value at the point xi .

S(xi ) = G(xi), 1 ≤ i ≤N

2. the system is completed if the orthogonality condition of the polynomial terms
are verified for all polynomials p with a degree less or equal to that of polynomial
h

N
∑

i=1

ηip(xi) = 0

The minimal degree of polynomial h depends on the choice of the RBF. A unique
interpolant exists if the basis function is conditionally positive. If it is of order m ≤ 2,
the following linear polynomial can be used in a three-dimensional space:

h(x) = β1 + β2x + β3y + β4z

A consequence of using a linear polynomial is that rigid body translations are ex-
actly recovered.

The values for the coefficients ηi of RBF and the coefficients β of the linear polyno-
mial can be obtained by solving the linear system (of order N +4):













U P

PT 0

























η

β













=













G

0













where
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• G = {G1, . . . ,GN }T are the know values of the interpolating function at the source
points;

• β = {β1, . . . ,βN }T are the coefficients of the polynomial h;

• U is the interpolation matrix (of dimension N ×N ), defined calculating all the
radial interactions between source points

Uij = ϕ
(

‖ xi − xj ‖
)

, 1 ≤ i ≤N, 1 ≤ j ≤N

• P is a constraint matrix (of dimension N × 4) that contains a column of ones and
the xi coordinates of source points in the others three columns2

P =



































1 x1 y1 z1
1 x2 y2 z2
...

...
...

...

1 xN yN zN



































The process of deformation through the RBF expects to move each point individu-
ally according to the chosen interpolating function. The displacements along the three
coordinates are governed by the following system:



































































vx = Sx(x) =
N
∑

i=1

ηxiϕ (‖ x − xi ‖) + βx1 + βx2x + βx3y + βx4z

vy = Sy(x) =
N
∑

i=1

ηyiϕ (‖ x − xi ‖) + βy1 + βy2x + βy3y + βy4z

vx = Sz(x) =
N
∑

i=1

ηziϕ (‖ x − xi ‖) + βz1 + βz2x + βz3y + βz4z

The behaviour of the function (and smoothness) between points depends on the
kind of basis adopted. Several formulations of RBFs exist in literature. Typical RBFs,
with global and compact support, are listed in Table 2.1.

The radial basis method has several advantages that make it very attractive for
mesh smoothing and is considered one of the best mathematical tool to perform this
task.

RBF mesh morphing is a meshless method - only grid points are moved regardless of
which elements are connected (it is not necessary to store any information about
the connectivity property of the mesh).

RBF system solution is suitable for parallel implementation - once the solution is known
and shared in the memory of each cluster node, each partition has the ability to

2The control points should not be contained in the same plane otherwise the interpolation matrix
would be singular.
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smooth its nodes without taking care of what happens outside (high scalability) im-
plicitly guaranteeing the continuity at interfaces.

RBF morphing action exactly prescribes known deformations - Surfaces are displaced ex-
actly according to a known deformation. This effect is achieved by using all the mesh
nodes as RBF centres with prescribed displacements, including the simple zero field
to guarantee that a surface is left untouched by the morphing action.

Table 2.1: Typical Radial Basis Functions.

RBF with global support ϕ(r), r =‖ r ‖

Spline type (Rn) rn,n odd

Thin plate spline (TPSn) rn log(r),n even

Multiquadric (MQ)
√
1+ r2

Inverse multiquadric (IMQ)
1√

1+ r2

Inverse quadratic (IQ)
1

1 + r2

Gaussian (GS) e−r
2

RBF with compact support ϕ(r) = f (ξ),ξ ≤ 1,ξ =
r

Rsup

Wendland (C0) (1− ξ)2

Wendland (C2) (1− ξ)4(4ξ +1)

Wendland (C4) (1− ξ)6(35ξ2 +18ξ +3)

Wendland (C6) (1− ξ)8(32ξ3 +25ξ2 +8ξ +1)

2.2 Structural modal analysis

Modal analysis is the study of the dynamic properties of structures under vibrational
excitation [41]. Its goal is the determination of the undamped natural modes shapes
and frequencies of a mechanic system during free vibration. It is applicable to both
continuum and discrete systems (as FEM models) under the linear hypothesis. A con-
tinuum structure has an infinite number of modes while a discrete system has a num-
ber of modes equal to the number of degrees of freedom.
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Mode shapes are the patterns the system assumes during vibration at specific natural fre-
quencies.

Natural frequencies are the frequencies at which the structure would tend to naturally
vibrate when subjected to a disturbance.

Modes are inherent properties of a mechanical system. They are determined by
material properties and structural boundary conditions. Any variation of the struc-
tural properties (material, masses distribution, damping and stiffness) would alter
both modal shapes and frequencies. The vibrational characteristics of a structure can
then be controlled at design stage. In aeronautics, for instance, the definition of masses
distribution and/or structure composite plies layout, linked to an opportune aerody-
namic design3, is adopted to delay instability phenomena as divergence or flutter on-
set.

The transient dynamic motion of a system with n degree of freedom is governed by
the following second-order differential equations system:

[M]{ẍ}+ [C]{ẋ}+ [K]{x} = {F(t)} (2.1)

where [M], [C] and [K] are respectively the mass, the damping (viscous) and the stiff-
ness matrix. {ẍ}, {ẋ} and {x} are respectively the nodal acceleration, velocity and dis-
placement vector at a specific time t. {F(t)} is the load vector of the time dependent
forces that are applied to the system.

For modal analysis, a special case in which {F} = 0 (free vibration) and [C] = 0 (un-
damped condition), has to be solved. The equation 2.1 reduces then to the following
free-vibration representation of the structural motion:

[M]{ẍ}+ [K]{x} = 0 (2.2)

The response of this system, in function of time, is assumed to be harmonic and
can be expressed in the form

{x} = {X}sin (ωnt) (2.3)

where {X} is the eigenvector, or mode shape, and ωn is the circular (or rotational)
natural frequency (proportional to the natural frequency, ωn = 2πfn).

Substituting the equation 2.3 in 2.2, after some passages is possible to obtain the
eigenvalue problem

(

[K]−ω2
n[M]

)

{X} = {0}

3A typical example is the positioning of the engine nacelle. Its advanced position respect to the
elastic axes of the wing box has a stabilizing effect. Under gust, for instance, having the centre of gravity
of the engine forward of the wing induces a torsional moment which reduce the angle of incidence,
and hence the wing load. A similar stabilizing effect, on static divergence, is generated by adopting a
backward sweep angle [42].
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which has a solution if the matrix
(

[K]−ω2
n[M]

)

is singular. This condition represents

the form of the general eigenproblem where ω2
n is an eigenvalue.

If [K] and [M] are definite positive, the number of non-zero ωni (with i = 1 . . . k) is
equal to the number of DoF of the system. The vector {Xi }, corresponding to the cir-
cular frequency ωni , is an eigenvector that corresponds to the ith natural mode shape
of the structure. Since the solution of the eigenvalue problem is a subspace of eigen-
vectors problem, the sign and the entity of each eigenvector may change depending on
the algorithm adopted for the solution achievement.

The eigenvalue system can be solved numerically according to many methods. The most
commonly adopted is the Lanczos method [43], which allows eigensolutions with eigenfre-
quencies to be extracted in ascending order.

An important result of the modal theory is the spectral decomposition. Eigenvec-
tors (modes), corresponding to different circular frequencies, are orthogonal with re-
spect to both structural stiffness and mass matrices. The following relationship is then
valid:

{Xj }T [M]{Xi } = {Xj }T [K]{Xi } = {0}, i , j

that means that eigenvectors are linearly independent. This characteristic suggests to
introduce a new reference system in which the equations can be uncoupled so that the
contribution of each mode to the structure deformation is isolated.

Another important characteristic of natural modes is that the scaling or magnitude
of the eigenvectors is arbitrary because they are an intrinsic characteristic of the struc-
ture. It means that they do not change in shape, when vibrating, but only in amplitude.

For solution purposes a convenient normalization, imposing for each mode {Xi } a
unit modal mass, is adopted

{Xi }T [M]{Xi } = 1

and a definition of modal coordinates (or displacements) vector {q} is introduced

{q} = [X]−1{x} (2.4)

[X] is the modal matrix whose columns are the eigenvectors normalized with re-
spect to mass and for which the following relation is assumed to be valid:

[X]T [M][X] = [I ] (2.5)

For the stiffness matrix the following relationship is satisfied

[Ω] = [X]T [K][X] =


































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0 · · · 0
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· · · 0
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




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The matrix [Ω], known as spectral matrix, is populated with the eigenvalues along
the diagonal and with zeros in the other positions.

Substituting the equation of the modal coordinates vector (eq. 2.4) in the general
formulation of the equations system of motion (eq. 2.1), multiplying both terms by
[X]T and including the relation 2.5, we obtain

[I ]{q̈}+ [X]T [C][X]{q̇}+ [Ω]{q} = [X]T {F(t)} (2.6)

To uncouple the equations system 2.6, the matrix [X] is required to be such to make
the matrix [C] diagonal. This assumption can be satisfied if [C] can be expressed as a
linear combination of the structural mass and stiffness matrices.

[C] = (a[M] + b[K])

Each equation of the system 2.6 can then be posed in the uncoupled form

Mii q̈i +Cii q̇i +Kiiqi = Fi(t)

that, for convenience, is usually expressed as

q̈i +2ζiωni q̇i +ω
2
ni
qi =

Fi(t)

Mii
(2.7)

where ωni and ζi are respectively the rotational frequency and the damping factor

ωni =

√

Kii
Mii

, ζi =
Cii

2Miiωni

Modal participation factors

Consider a multi DoF system excited by the translational motion of the constraints
and chose the relative displacements between the various masses and the supporting
points to describe its motion. The equation of motion can be written in terms of modal
coordinates as [44]

[M][X]{q̈}+ [K][X]{q} = −[M]δxẍA − [M]δy ÿA − [M]δzz̈A + {f (t)} (2.8)

where xA, yA and zA are the components of the displacement of the rigid frame and the
terms δx, δy and δz are simply the direction cosines of the displacement.

If the modal matrix [X] is not obtained by normalizing the mode vectors {Xi } with
the modal mass, the expressions of modal mass [M̄] and modal stiffness [K̄] matrix are

[M̄] = [X]T [M][X] (2.9)

[K̄] = [X]T [K][X] (2.10)
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Multiplying all terms of equation 2.8 by matrix [X]T and considering equations 2.9
and 2.10, we can write

[M̄]{q̈}+ [K̄]{q} = −pxẍA − pyÿA − pzz̈A + [X]T {F(t)}
where

pξ = [X]T [M]δξ , ξ = x,y,z

The terms pξ are called modal participation factors. The higher their value in a cer-
tain direction, the more that mode is excited by a motion of the supports in that direc-
tion.

When studying the response to an excitation due to the motion of the supporting points, it
is usually sufficient to consider the few modes characterized by a high value of the corre-
sponding modal participation factor.

Modal participation factors give a measure of how much of the mass of the system
participates in the ith mode when the system is excited by a motion of the supporting
frame in the relevant direction. It can be demonstrated, in fact, that the total mass of
the system can be expressed as

mT = pTξ [M̄]−1pξ (2.11)

The modal mass matrix is diagonal, and thus the equation 2.11 can be written in
the form

mT =
k

∑

i=1

(

pξi
{M̄}i

)

Often ratios
pξi
{M̄}i

, also known as effective mass participation factors, are expressed

as percentages of mass mT and are used instead of the modal participation factors to
provide a measure of the energy contained within each resonant mode. They represent
the amount of system mass participating in a particular mode.

2.2.1 Modal superposition for static FSI analysis

In static aeroelastic problems approached by modal superposition, a simplified formu-
lation of the modal theory can be adopted.

An aeroelastic phenomenon is considered static if the velocity of deformation of the system
is higher than the velocity with which the loads are applied.

If the modal coordinates are not time depending, the equation 2.7 can be simplified
in:

ω2
ni
qi =

Fi
Mii

(2.12)
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Combining the equation 2.4 and 2.12

{x} =
k

∑

i=1

{Xi }qi =
k

∑

i=1

{Xi }
Fi

Miiω
2
ni

(2.13)

The modal forces Fi are, in FSI phenomena, associated to the aerodynamic resul-
tants which, in a numerical analysis, correspond to the CFD loads related to pressure
and shear stresses4.

The equation 2.13 states that the deformation of the whole system is expressed as a
combination of the modes weighted by the modal coordinates which are expressed as

qi =
Fi

Miiω
2
ni

The complete solution of the eigenvalue problem, can be approximated by retaining
only a smaller set of lower modes with a substantial reduction in the number of degrees
of freedom. This assumption is valid because mechanical systems are characteristically
low-pass which means that the lowest frequency modes have the highest energy levels
and are then physically prominent. This operation is called modes truncation. The
minimum number of modes to retain depends on the system to be solved.

2.2.2 Formulation for unsteady FSI modal analysis

In case the phenomenon under investigation cannot be considered static, no simplifi-
cation on the equation 2.7 can be adopted. Its unsteady formulation can be written as
follows [41]:

q(t) = e−ζωnt
[

q0 cos(ωdt) +
q̇0 + ζωnq0

ωd
sin(ωdt)

]

+

+e−ζωnt
{

1

mωd

∫ t

0

e
−b(t−τ)
2m f (τ)sin [ωd (t − τ)]dτ

}

(2.14)

where q0 and q̇0 are respectively the modal coordinates and the modal velocities at
the initial instant of computation (boundary conditions at t = 0). ωd are the damped
circular frequencies of the system expressed as

ωd =ωn
√

1− ζ2 (2.15)

The integral formulation within the curly brackets in the equation 2.14 is known
as Duhamel integral and states that the reaction of a linear system subjected to a force
f (t) can be expressed by summing all the differential responses developed during the
loading history (i.e. equal to the sum of the reactions of the system to the single im-
pulses constituting the total force time evolution). This formulation can not be applied

4In some cases, as in high supersonic flows, it might be important to account also for thermal effects.
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for a generic numerical analysis. However, given the initial conditions q0 and q̇0, if the
acting force is constant within every timestep, the equation 2.14 assumes the following
form

q(t) = e−ζωnt
[

q0 cos(ωdt) +
q̇0 + ζωnq0

ωd
sin(ωdt)

]

+

+e−ζωnt










F

ωd













4ωd
ζ2ω2

n +4ω2
d

− e−ζωnt 2ζωn sin(ωdt) + 4ωd cos(ωdt)

ζ2ω2
n +4ω2

d























(2.16)

The formulation of equation 2.16 can be adopted to update the modal coordinates
in a time marching algorithm. Considering the equations 2.4 and 2.16, the nodal dis-
placement vector can thus be expressed in function of time as

{x(t)} =
k

∑

i=1

{Xi }qi(t)

Similarly to the steady case, the whole deformation of the structure in unsteady
state conditions, can be determined by linearly combining a certain number of modes
using their time dependent modal coordinates as weights.

2.3 Solution mapping between non-matching domains

Vectors mapping is the process required when quantities need to be transferred be-
tween different non-matching discretized domains. In coupled fluid-structure analy-
sis, the loads mapping consists in transferring the forces extracted from the cells faces
adjacent to the wall of the CFD mesh (integrating scalar and vector fields) to the cor-
respondent points of the structural domain in a form of forces vectors (figure 2.1).

Figure 2.1: Example of a mapping problem through non-matching meshes.

The requirements for mapping methods are of being:

accurate - no loss of load magnitude or direction has to occur during the transfer process;

flexible - must be able to handle dissimilar meshes including the cases fine-to-coarse and

Ubaldo Cella



2 Theoretical background 19

coarse-to-fine;

performant - must be capable to manage very large models in reasonable times.

With the view of the high fidelity requirements of CFD and FEM models, which involve
the use of large meshes, the last point acquires particular importance.

2.3.1 Review of mapping schemes

A good review about load transfer schemes can be found in [45] and [46]. In both
papers a great focus about load conservation and error estimation is given. Practical
examples of aeronautical applications are presented in [47].

Among load transfer methods, it is worth to mention:

• Point-wise interpolation/extrapolation - the loads are interpolated at sources
and become available as a point function. It is then used to extrapolate the load
value at target point. The method is flexible because several strategies can be
selected to interpolate the sources. The main drawback is that the equilibrium is
not guaranteed.

• Point to element projection schemes - it relates to a direct connection between
closest source elements and target points. The value at target is obtained us-
ing shape functions of the connected source element. The main complexity is
related to neighbour searching (which can be optimised using space partition-
ing methods as octal tree decomposition). Local and global equilibrium are not
guaranteed because the connection between sources and targets relies on local
quantities and not to surface averaged ones.

• Areaweighted averaging - the value of a target element is defined as the weighted
average of the values of the source elements in contact. The weights are the ar-
eas of the intersections between the source and target elements. Conservation is
guaranteed. The method can be classified as a special case of common refinement
schemes that are proven to be conservative both globally and locally producing
more accurate results if compared to point to element approach.

• Mortar elements methods - it is based on the introduction of an artificial thin
shell structure that covers the domains interface as a vehicle for transferring the
solution between the meshes [48]. The mortar interface usually is defined start-
ing from the CFD mesh refining it splitting the cells at FEM nodes locations.
The obtained shell mesh has nodes both at CFD and FEM nodal positions. FEM
forces are obtained as constraints reactions from the solution of a static struc-
tural problem in which the shell nodes, corresponding to the FEM locations, are
constrained while the ones corresponding to CFD locations are loaded with the
CFD vectors.
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2.3.2 The RIBES load mapping implementation

Interface reconstruction methods can benefit of the high quality achievable using the
implicit surface definition based on RBF interpolation [49]. This approach is usually
adopted to reconstruct a geometry that comes from a laser scan in reverse engineering
applications. The mapping method implemented within the RIBES project exploits
this feature.

TheRIBES vectors mapping procedure consists in decomposing the original datasets
in small RBF problems (for moderate amounts of data a single RBF transfer could be
considered). The field, defined as a set of values at centroids or nodes of the source
mesh, is interpolated using RBF. In case of force vectors field, the three components
are interpolated by three independent RBF solutions. The Partition Of Unity (POU)
method [50] is used to organize the source and target point sets into overlapping sub-
domains in which the interpolation problem is locally solved.

Given a smooth manifold M with an open cover Ui , a Partition Of Unity subject to the
cover Ui is a collection of smooth, non-negative functions ψi , such that the support of ψi
is contained in Ui and

∑

i ψi = 1 everywhere [51].

The force field is exchanged between the source subdomain and its target counter-
part. In order to recover the continuity of the field and to guarantee the smoothness
of the global solution, the resulting set of local solutions are combined together by a
blending function. The blending polynomial is obtained from a set of smooth func-
tionsWi by a normalization procedure

wi(x) =
Wi(x)

∑

jWj (x)

where the condition
∑

iWi(x) = 1 has to be satisfied.
The weighting functions Wi can be defined as the composition of a distance func-

tion di and a decay function Vi . The distance function has to satisfy the condition
di(x) = 1 at the boundaries of a subdomain. The decay function is defined from the
distance function. Its degree can be arbitrarily defined. Examples of decay functions
with growing degree are

DF(d) = 1− d
DF(d) = 2d3 − 3d2 +1

DF(d) = −6d5 +15d4 − 10d3 +1

The shape of a subdomain can be arbitrarily chosen. For a spherical one, the dis-
tance function assumes the simple form

d(x) =
r(x)

R
R

r(x)
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Spherical subdomains can correctly subdivide space only if they deeply overlap
each other, otherwise some points could be left outside the subsets.

For a box (parallelepiped) shaped subdomain it assumes the form

d(x) = 1−
∏

r∈(x,y,z)

4(xr − Sr) (Tr − xr)
(Tr − Sr)2

T

S

y
x

z

where S and T are the opposite points on the diagonal of the volume. Boxes best fit in
Cartesian space. Their overlap depth can be arbitrarily decided. A zero overlap can be
also set but in this case a loss of smoothness will occur.

The forces on the target mesh nodes are obtained by multiplying the interpolated
forces density field by the area (or volume for space fields) of the corresponding tar-
get cells. The error in the equilibrium between source and target field is related to
this point and depends on the differences between the two discretizations. Forces and
moments equilibrium is smoothly recovered introducing three corrective coefficients
(one for each component along X, Y and Z) that locally force the equivalence between
the resultants of the source and target subdomains (not necessarily equivalent to the
subdomains used in the interpolation). The coefficients continuity and their smooth
transition between subdomains are obtained by overlapping the volumes and by the
adoption of blending functions with a POU decomposition approach similar to the one
adopted to organize the source and target points.

Assuming two overlapped subdomains, indicated as i and j, the corrected resul-
tants are obtained as































Rx =
∑

Fx,icx,iwi(x) +
∑

Fx,jcx,jwj (x)

Ry =
∑

Fy,icy,iwi(x) +
∑

Fy,jcy,jwj(x)

Rz =
∑

Fz,icz,iwi(x) +
∑

Fz,jcz,jwj(x)

The corrective coefficients set is constant within the same subdomain. It is then
possible to write































Rx = cx,i
∑

Fx,iwi(x) + cx,j
∑

Fx,jwj (x)

Ry = cy,i
∑

Fy,iwi(x) + cy,j
∑

Fy,jwj(x)

Rz = cz,i
∑

Fz,iwi(x) + cz,j
∑

Fz,jwj(x)

The above formulations are valid for the computation of the homologous source
subdomain resultants if:

ci =








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




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1

1


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The corrective coefficients, for the selected subdomains, are then expressed as:

cx,i =

[∑

Fx,iwi(x)
]

source
[∑

Fx,iwi(x)
]

target

cx,j =

[

∑

Fx,jwj (x)
]

source
[

∑

Fx,iwj(x)
]

target

cy,i =

[

∑

Fy,iwi(x)
]

source
[

∑

Fy,iwi(x)
]

target

cy,j =

[

∑

Fy,jwj(x)
]

source
[

∑

Fy,iwj (x)
]

target

cz,i =

[∑

Fz,iwi(x)
]

source
[∑

Fz,iwi(x)
]

target

cz,j =

[

∑

Fz,jwj (x)
]

source
[

∑

Fz,iwj (x)
]

target

The reported correction is continuous and provides the mathematical equilibrium
of local forces.

Procedure validation

The developedmapping procedure was validated using theHiReNASD (High Reynolds
Number Aero-Structural Dynamics) test case [52]. It consists in a half wing/fuselage
wind tunnel model used in a workshop for aeroelastic numerical methods validation.
Both CFD and FEM grids are available. The static pressure field was mapped from
the CFD wing surface grid to the wing structural FEM mesh. Table 2.2 reports the er-
rors introduced by the interpolation process without correction between the two non-
conformal domains.

Table 2.2: Non corrected interpolation errors between HiReNASD model grids.

Fxerr Fyerr Fzerr Mxerr Myerr Mzerr

% % % % % %

47.3 6.6 1.0 13.1 13.8 27.8

Table 2.3 reports the errors on moments obtained applying the correction proce-
dure implemented within the RIBES project (errors on forces are zero for definition).
The errors are below 0.3% along all directions.

Table 2.3: Corrected interpolation errors between HiReNASD model grids.

Mxerr Myerr Mzerr

% % %

0.01 -0.28 -0.06
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3
Coupling structural and aerodynamic
solutions

T
he availability of numerical tools able to model the physics of the several aspects
involved in a design, and their interaction, significantly increases the designer
capability to produce higher-performance products. This is particularly felt, in

aeronautics, concerning methods for studying the Fluid-Structure Interaction mech-
anism. In the modern scenario, the high performance of fighter, the increasing size
of transport aircraft and the increasing performance request of the market, together
with the extensive adoption of composite light weight structures, have enlarged the
flexibility effects on the aerodynamic characteristics of aircrafts.

Several FSI methods with several order of fidelity are available in literature. De-
signers have the possibility to select the most appropriate numerical tool for each stage
of the design process although the rising availability of powerful HPC environment
motivates the interest in anticipating the adoption of more accurate tools in earlier
stages of design. For this reason the interest in high fidelity based analysis methods,
and in the improvements of their efficiency and robustness by novel implementation
techniques, have significantly raised in the last years.

The state of the art in high fidelity FSI numerical methods consists in coupling,
within an iterative process, RANS and FEM solvers in a so called 2-way procedure.
Several complexities arise in the implementation of an efficient coupling between the
aerodynamic and the structural solution. Among them, the reception of the structural
deformation within the CFD environment is probably the most dominant. In the work
here presented we focus the attention on this topic by the setup and validation of
high fidelity static aeroelastic analysis procedures in which the problem of domain
adaptation is faced adopting mesh morphing techniques.

Beside the 2-way, an FSI method based on the modal superposition approach is
proposed. This strategy offers the possibility to introduce some simplification with-
out potentially compromising significantly the accuracy. It, furthermore, offers the
possibility to include, in a monolithic way, the analysis within a single numerical envi-
ronment with a significant improvement in term of robustness and performances. The
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major drawbacks in the adoption of the modal approach are identified in the limitation
of its validity to linear problems and in the potential uncertainness in the selection of
the number of modes to be adopted (which can be however tackled by implementing
a modal base qualification procedure).

3.1 Domain adaptation by mesh morphing

The adoption of multidisciplinary numerical analysis tools has become, in the last
decade, the standard choice to face most of design problems in the aerospace field.
These methods involve, in general, a geometric variation during the workflow that
requires a parametrization suitable for automatic updating procedures (as in shape
optimization, FSI analysis, ice accretion). The strategy used in the implementation of
such parametrization affects both the efficiency and the quality of the solution. Most
of the methods commonly used can be simplified into CAD based and mesh morphing
based. The first permits to exploit the features of modern parametric CAD systems pro-
viding the possibility to manage complex models, to have great control of the quality
of the geometry and to benefit of a large flexibility in variables and constraints defi-
nition (very useful in numerical optimization methods). The drawback of CAD based
methods is the necessity to regenerate the computational domain for every new ge-
ometry to be investigated introducing uncertainness in the procedure robustness and
in the accuracy of mesh dependent analysis methods. The remeshing requirements,
furthermore, limits the application to problems having moderate dimensions (in term
of computational domain cells number) or to relatively simple geometries suitable to
be modelled by structured grids.

Themeshmorphing approach consists in implementing the geometric parametriza-
tion directly on the computational domain. The new geometric configurations is ob-
tained imposing a displacement of a set of mesh regions (e.g. walls, boundaries or
discrete points within the volume) using algorithms able to smoothly propagate the
model displacement to the surrounding volume. The performances of the morphing
action (in terms of quality of the morphed mesh and computational resources require-
ments) depend on the algorithm adopted to perform the smoothing of the grid.

Mesh morphing methods can be categorized in mesh-based and mesh-less [53].

Mesh-based methods use the element topology of the mesh being morphed to define a
computational space to compute new node locations.

Mesh-less methods ignore the element topology, in favour of other algebraic relation-
ships.

Among the several algorithms available in literature, Radial Basis Functions are
recognized to be one of the best mathematical framework to face the mesh morphing
problem. Several advantages are related to the RBF mesh morphing approach:

• there is no need to regenerate the grid;
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• the robustness of the procedure is preserved;

• its meshless nature allow to support any kind of mesh typology;

• the smoothing process can be highly parallelizable;

• the morphing action can be integrated in any solver.

The latter feature offers the very valuable capability to update the computational
domain “on the fly” during the progress of the computation.

Figure 3.1 reports a typical application of mesh morphing for aerodynamic shape
optimization. In the example reported the fuselage of a glider was optimized by two
shape modifiers that act in the leading and trailing edge region of the wing root in
spanwise direction. The objective was to reduce a large separation that occurred in the
wing/fuselage junction at high incidence [54] (the left half model of the figure is the
baseline geometry while the right one is the optimized).

Figure 3.1: Example of mesh morphing for aerodynamic shape optimization.

The main disadvantages of RBF mesh morphing methods are the requirement of a
“back to CAD” procedure, some limitation in the model displacement amplitude, due
to the distortion occurring after extreme morphing, and the high computational cost
related to the solution of the RBF system which, if large computational domains are
involved, imposes the implementation on HPC environments.
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3.1.1 The morpher tool RBF Morph

The first commercial mesh morphing software based on Radial Basis Functions was
RBF Morph. Its development began in 2008 as a consultancy activity to a top Formula
1 team. The tool was born as an add-on of the ANSYS Fluent CFD code fully integrated
in the solving process and was launched to the market in 2009 [55]. Its efficiency
was successfully demonstrated on several industrial engineering problems that require
geometric parameterizations (shape optimization, 6DoF analyses, ice accretion, static
and dynamic FSI analyses) [56]. Today RBF Morph is also available as a standalone
library to be coupled with any code. It was successfully embedded in the solving
process of OpenFOAM, CFD++, elsA, StarCCM+ and the FEM solvers NASTRAN and
ANSYS Mechanical [57]. An implemented “back2CAD” feature provides the possibility
to generate a CAD model of the morphed geometry.

RBF Morph allows to extract and control points from surfaces and edges, to put
points on primitive shapes (boxes, spheres and cylinders) or to specify them directly
by individual coordinates and displacements. Primitive shapes can be combined in
a Boolean way allowing to limit the action of the morpher. The shape information
deriving from an individual RBF setup are generated interactively using a GUI and
subsequently used in batch commands that allow to combine many shape modifica-
tions in a non-linear fashion (non linearities occur when rotation axes are present in
the RBF setup). The displacement of the prescribed set of source points, and of the
combination of RBF solutions, can be amplified according to parameters that consti-
tutes the parametric space of the model shape.

The definition and the execution of a morphing action is, with RBF Morph, completed by
the following steps:

1. setup - the problems are manually defined and setup from the program GUI;

2. fitting - the RBF system is solved for each morphing action and solutions stored to
be available for amplification;

3. smoothing - surfaces and volumes of the computational domain are morphed ac-
cording to the stored RBF solution(s) and to arbitrary amplification factor(s).

The setup consists in the definition of the domain boundaries within which to limit
the morphing action, in the selection of the source points with which to impose fixed
and moving mesh regions and in prescribing the required movements to the points
used to drive the shape deformation. In the fitting process the RBF system, derived
from the problem setup, is solved and stored in a file to be ready to be amplified. This
operation has to be performed only once for every RBF problem. Stored RBF solu-
tions are very light (in terms of files dimension) compared to storing all the created
morphed mesh. The smoothing action is performed firstly applying the prescribed
displacement to the grid surfaces and then smoothly propagating the deformation to
the surrounding domain volume. It can be performed combining several RBF solu-
tions, each with its amplification factor, to constitute the parametric configuration of
the computational domain. Figure 3.2 reports an example of an RBF setup. The red
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points are distributed on the boundaries that are imposed as fixed. The green points
belong to the mesh region to which the displacement is applied. The source points can
both coincide to the grid points or can be generically located within the mesh volume.

Figure 3.2: Fixed (red) and moving (green) source points of an RBF setup.

It is well recognized that RBFs have high computational costs. This aspect repre-
sented the main limitation in their application in the past. Such costs can be lowered
by reducing the number of source points of the RBF problem. It was, in fact, demon-
strated that the number of points required is independent of the mesh size (the prob-
lem is geometric) and that an 11000 points surface mesh can be represented by only
200 points [58]. Several strategies, to optimize the problem dimension, are possible. A
straightforward method is, for example, to use a simple structured coarsening or un-
structured agglomeration. More efficient approaches, aimed to minimize the surface
interpolation error, are proposed in [59] in which a greedy method is used to select the
surface points. Rendall and Allen proposed and compared three error functions used
to guide the selection loop. RBF Morph is powered by a fast RBF solver that allows to
scale up with complexity with a N1.6 law. The fast implementation is based on a Local
Correction Method (LCM) [60]. A greedy approach can be selected to firstly reduce the
size of the points cloud. Omitted points can then be reintroduced with an advanced
algorithm that allows to wisely decide the most important points to be kept. The num-
ber of refinement cycles can be controlled by the user. Usually two cycles are sufficient
to achieve a substantial reduction of errors. The accuracy is then guaranteed by the
LCM which introduces as many local RBF problem as the number of retained points.
The combination of the global coarse RBF and the local ones (blended according to the
Partition of Unity approach) allows to gain the desired tolerance at all the centres of the
complete dataset. The Stand Alone version of RBF Morph features a Fast Multi Pole
Method (FMM) that is adopted for the various RBF clouds that are part of the overall
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LCM approach. The LCM distance needs to be tuned and usually exhibits an optimum
value versus RBF fitting and evaluation time [61].

RBF Morph achieves good performance also by an efficient parallel implementation
that, in HPC environments, allows to manage very large domains. Some examples that
highlight the software performances are reported in table 3.1.

Table 3.1: Examples of RBF Morph solver performance.

Problem dimension hardware solution elapsed time

14 mill. cells PC 4 cpu 2.67 GHz fitting: 53 sec. (serial)

60.000 source points smoothing: 3.5 min.

50 mill. cells HPC 140 cpu fitting: 25 sec. (serial)

30.000 source points smoothing: 1.5 min.

100 mill. cells HPC 256 cpu fitting: 25 min.

200.000 source points smoothing: 5 min.

Largest fitted cloud: 2 mill. points on 32 cpu in 3 hours

Largest morphed model (in our knowledge): 700.mill. cells on 768 cpu in 45 min

3.2 2-way CFD-CSM coupling

As already introduced, some of the main technical issues in CFD-CSM based FSI anal-
yses setup, relate to the data exchange between fluid dynamics and finite element
solvers.

• FEM and CFD outputs (structure displacements and loads, respectively) are dis-
cretized on non-matching clouds of points belonging to common boundaries for
which the mathematical definition of the surfaces is missing. An interpolation, to
close the iterative loop, is required. The surface pressure distribution, and friction
vectors if required, have to be mapped as loads from the CFD solution into the FEM
model. An error is, in general, introduced during this transfer and has to be con-
tained adopting opportune correction criteria.

• Solvers coupling requires several actions: solutions extraction, files format conver-
sion, setup update, run management and solutions quality check. If the analysis
has to be included in an optimization loop, routines controlling the procedure in
an automatic process have to be implemented in a complex environment that might
require an expensive debugging session.

• The adaptation of the fluid dynamic domain to the shape of the deformed model
estimated by the structural code (an action that has to be performed for every cy-
cle of aerodynamic loads evaluation) is a process that can degrade the quality of

Ubaldo Cella



3 Coupling structural and aerodynamic solutions 29

the computational grid. The mesh morphing action has to be propagated from the
known displaced surfaces into the volume mesh and requires efficient and robust
algorithms.

The workflow of a 2-way FSI analysis is synthesized in figure 3.3. The process
begins with the CFD analysis of the rigid model at the desired condition. A mapping
procedure is then applied to transfer the aerodynamic loads to a FEM model of the
object under investigation. The structural analysis solution, in terms of wet surfaces
displacement, is used as target for the mesh morphing tool in order to update the fluid
dynamic domain according to the estimated deformed shape. The CFD computation
is restarted on the new configuration and the cycle continues until the final deformed
shape (for a steady condition) is reached.

Undeformed
geometry

CFD
computation

CFD Mesh
update

Deformed
shape

Loads
mapping

FEM
analysis

Shape
changed? END

NoYes

Figure 3.3: Workflow of the 2-way FSI procedure.

3.2.1 CFDmesh update

Several methods, able to prescribe different movements of the mesh regions, are imple-
mented in RBF Morph. Among them, a very useful feature is the capability to import
external geometries and displacement fields to be used as a target domain where to
project the displaced nodes. The mesh morphing for 2-way FSI is performed exploit-
ing the capability to import a FEM displacement solution field in Nastran format and
to use it as a target for the smoothing process. In other words, themorpher uses a series
of RBFs to produce a solution for the mesh movement using, as input source points,
the imported FEM grid nodes and their displacements. The setup is made defining an
arbitrary number of centres in the three dimensional space (to define the domain por-
tion subjected to the morphing action), selecting the points belonging to the movable
surface (FEM grids nodes) and prescribing them the computed movement (FEM points
displacements). A displacement field that exactly interpolates the values prescribed at
each source point is calculated in the fit stage and made available for nodes updating
(smoothing) as a closed-form solution. The process can be executed by command lines
and can be defined in a script file in order to automate the process. After fitting the
RBF field for each direction (handled as separate scalar functions), a vector valued in-
terpolation function that allows to calculate the displacement for any given point, is
obtained. Such solution can be amplified using an arbitrary value. Using 0 as amplifi-
cation factor no deformation will be applied. The target geometry is reproduced using
1 as amplification. Any intermediate value will produce a proportional intermediate
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shape. Figure 3.4 reports, as example, the application on a morphing wing leading
edge. The yellow mesh is the clean wing geometry. The black one corresponds to a
deployed configuration obtained morphing the wing according to a displacement field
computed using a non linear FEM analysis. The other overlapped grids are obtained
amplifying the solution with the intermediate values of 0.25, 0.5 and 0.75.

Figure 3.4: Mesh morphing using a target non linear FEM result.

3.3 Modal FSI Implementation

Modal FSI analysis consists in coupling structural and fluid dynamic solutions by rep-
resenting the deformation of the structure as a superposition of a set of its natural
modal shapes. It is a very well established method for dynamic analyses of complex
FSI problems. The numerical implementation is based on a preliminary FEM modal
analysis fromwhich a number of natural modes is selected to be used in the creation of
a parametric fluid dynamic domain. The grid ismade parametric onmodal coordinates
and updated bymeshmorphing during the progress of the fluid dynamic computation.
Modal coordinates are used as weights for the morphing action of each modal shape
and are obtained from the modal forces extracted by integrating the pressure and fric-
tion forces on the wall boundaries. The main advantage is the creation of simpler
numerical environments respect to coupled CFD-CSM procedures. The iteration with
external solvers is no further required and the complexities associated to the codes
coupling (i.e. inputs/outputs format conversion, mapping interpolation, runs man-
agements) bypassed. This numerical simplification represents a significant advantage
in the vision, for instance, of implementing automatic procedures to be integrated in
optimization environments. In the modal approach the “interface” between the fluid
dynamic and the structural solution consists in just a single small vector represent-
ing the modal coordinates (modes are mesh independent and consistent for both fluid
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and structural model). The major drawbacks is that the modal approach can be used
for linear problems only which implies that structural non-linearities, due to material,
large displacements or contacts, cannot be considered. The range of its application is
then more restricted in comparison to the 2-way FSI methods but still wide enough to
cover many of the typical fluid-structure interaction phenomena present in aerospace
problems.

Some doubts about the generality of the modal approach, in the application for
static FSI analysis, was highlighted during the first Aeroelastic Prediction Workshops1

and concern the optimal choice of the number of modes to be adopted. Among the
works presented during the workshop, Ritter [62] used 20 modes to perform its aeroe-
lastic analysis. In a study presented at the IFASD 2013 Workshop [63], all the numer-
ical tests were conducted using 30 modes. In general, when a new configuration has
to be studied, and the opportune number of modes to be adopted cannot be estimated
on the basis of previous experience, a modal base qualification procedure can pro-
vide useful indications in advance. The procedure consists in the extraction of a large
enough modal base, in a preliminary CFD analysis of the rigid model (from which
to extract loads and modal coordinates) and in the comparison of the modal ampli-
fied solution with the deformation computed by a static FEM analysis (using the same
model adopted for the eigenvalues analysis) of the baseline geometry using the loads
estimated by the rigid CFD model. The ability of the modal base to correctly replicate
the FEM estimated displacement shape is then investigated by examining the vector
field obtained subtracting the displacement of the modal approximation (using a can-
didate number of retained modes) from those coming from the static FEM analysis.
The resulting vector field represents the modal truncation error. It can be used to de-
cide how many modes to retain and to confirm if the guess base is large enough. This
procedure was applied in the validation activity described in the next chapter where a
deeper description of its setup is provided. The results of this activity were anticipated
in [64].

The complete workflow of the modal FSI analysis is described in figure 3.5. Once
available, the modal shapes are used to generate an RBF solution for each of the se-
lected modes. The solutions are stored to constitute the database of the parametric
mesh model (this action has to be performed only once for every structural configu-
ration). The last step consists in implementing, within the CFD solver, the execution
of the RBF based mesh update. The structural response can now be evaluated directly
in the modal space. The analysis begins with the initialization of the dynamic mesh
morpher with the stored RBF solutions and the modal forces calculation module to be
available for recall during the computation.

The manual setup activities of a modal FSI implementation consists in the following steps:

• FEM model construction and computation setup of the undeformed configuration;

• structural modal analysis and extraction of natural frequencies and modal shapes;

1https://c3.nasa.gov/dashlink/projects/47/.
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• generation and setup of the fluid dynamic numerical configuration;

• RBF setup and generation of the database of the morphing solutions based on the
modal shapes;

• setup of the FSI computation within the CFD environment.

Undeformed geometry

Structural modal analysis

Morphed CFD mesh database (one per mode)

Modal coordinates q

Parametric mesh update

CFD computation

Convergence?

END

No

Yes

CFD
flexible
model

Figure 3.5: Workflow of a modal FSI analysis.

3.3.1 Parametric mesh formulation

The core of the modal implementation is the parametric mesh formulation, by modal
coordinates computed during the computation, and its inclusion within the CFD en-
vironment. According to equation 2.13, the parametric formulation for the mesh be-
comes

XCFD = XCFD0
+

k
∑

i=1

qi∆Xi

where XCFD are the positions of the grid nodes, XCFD0
are the positions of the nodes of

the undeformed baseline mesh, qi are the (unknown) modal coordinates and ∆Xi are
the modal displacements of the ith mode (the modal shapes amplitude are normalized
with respect to the mass and their absolute values are meaningless if not properly
amplified using actual modal coordinates).

Ubaldo Cella



3 Coupling structural and aerodynamic solutions 33

The modal forces associated to the aerodynamic resultants are calculated within
the CFD solver by a loop performed over all wall domains under FSI investigation.
The value of the ith modal force is a scalar obtained from the sum of the dot product
between the nodal loads and the nodal mode displacements of each node of the nsurf
mesh surfaces.

Fi =

nsurf
∑

j=1

∆XTijQj (3.1)

Considering that a mass normalization criterion was defined for modes extraction,
from equation 2.12 the modal coordinates are expressed as

qi =
Fi
ω2
ni

(3.2)

The final expression of the parametric mesh formulation becomes

XCFD = XCFD0
+

k
∑

i=1

Fi
ω2
ni

∆Xi (3.3)

The mesh morphing model is embedded in the FSI procedure by a script which
drives, every prescribed number of CFD iterations, the integration of the modal forces
(eq. 3.1), the computation of the modal coordinates (eq. 3.2) and the update of the
mesh combining the modal RBF solutions (eq. 3.3). The local nodal loads are obtained
summing the inviscid forces components (which are vectors acting in a direction nor-
mal to the wall cells and obtained multiplying the computed pressure values by the
cells area) and the viscous components (which are the friction vectors acting tangen-
tially of the cells surface). In case of aeroelastic analysis of lifting bodies, as it will be
later justified, the viscous components can be reasonably ignored.

It is worth to add that, even if not addressed here, the method can be used also for
transient analysis. The FSI module implemented in RBF Morph uses the formulation
described in section 2.2.2 to model unsteady phenomena. An example of its applica-
tion for the transient aeroelastic response analysis of a wing after store separation is
reported in [65].
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4
Aeroelastic analysis of a transonic
aircraft model

A
ircrafts aerodynamic performance estimation by experimental wind tunnel
measurements is a complex task that requires high qualified competences and
sophisticated measurements procedures. The complexities increase with the

Reynolds number and with the velocity of the test conditions both in terms of type of
facility and in measurement techniques. In order to properly replicate, at model scale,
the free flight conditions of the full scale aircraft, both Mach and Reynolds numbers
have to be guaranteed at tests conditions. If both can not be ensured, an opportune
compromise must be selected giving priority to the parameter that has the most dom-
inant influence on the physical aspect that has to be studied (e.g. laminar flow, com-
pressibility, stall. . . ) and adopting opportune solutions to correct, or to reduce, the
uncertainness induced by the missing similitude on the other parameter (e.g. forcing
the development of turbulent flow by transition trips). When investigating transonic
regimes, the requirements for the simulation of the two flow conditions becomes par-
ticularly conflicting. The high speeds involved force, in order to limit the tunnel mass
flow rate, to reduce the model dimension (and consequently the Reynolds number).

The Reynolds number is a dimensionless quantity describing the ratio between inertial and
viscous forces. It is based on a reference length x (the chord length in case of airfoils and
wings) and is expressed as

Re =
ρVx

µ

The Mach number is a dimensionless quantity representing the ratio between the flow
velocity V and the speed of sound c. For an ideal gas it can be expressed as

Mach =
V

cideal
=

V
√

γRT
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Assuming the model dimension to be constrained, the only way to recover the
Reynolds number is to act on the other parameters of its formulation. The most com-
mon strategy, adopted in high speed wind tunnels, is to pressurize a closed circuit
thus increasing the density1. The loads on models, in this type of tests, can be very
large and even if they are extremely stiff, wind tunnel models are not immune from
deformation.

The 2-way CFD-CSM and the modal based FSI analysis methods described in the
previous chapter were validated against one of this type of test case. It consists in a
wind tunnel model of an aircraft in complete configuration tested in transonic condi-
tions. The strong coupling between aerodynamics and structural deformation, due to
the wing sweep angle, allow to assess the capability of the numerical tools to properly
capture the interaction between deformation and aerodynamic performance.

4.1 The Piaggio P1XX business-class aircraft WT model

The geometry refers to a Piaggio Aerospace program, called P1XX, concerning the de-
velopment of a medium size business jet class aircraft. A wind tunnel model of the
complete aircraft (wing, fuselage, engine nacelle, vertical and horizontal tail) was built
and tested in cruising conditions in the ONERA S2MA transonic facility.

Figure 4.1: Piaggio P1XX transonic wind tunnel model (courtesy of ©Piaggio Aerospace).

Themodel is steel-made and is mounted on a six-component balance by a sting con-
nected to the fuselage (figure 4.1). It is equipped with eight external and four internal

1Another strategy is to cool down the flow in pressurized tunnels by using nitrogen in place of air
acting then also on speed of sound and viscosity. Such wind tunnels are extremely expensive but allow to
replicate the full flight Reynolds number of most aircrafts and to investigate the laminar flow behaviour
(although it is still a very challenging task) at typical Reynolds numbers of modern liners in cruise [66].
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static pressure taps used to calibrate the pressure measurement procedure. The flow-
through nacelles have been dimensioned in order tomaintain the real enginemass flow
rate in cruising condition. The pressure distribution on the surface was measured us-
ing Pressure-Sensitive Paint (PSP)2. The principle of the PSP measurement technology
is based on the response of a two-components photoluminescent paint excited with UV
lights [67]. One of the two components of the paint is emitting a blue light, whereas
the other one is emitting a red light. The response of the blue component depends on
the local oxygen concentration in the air (i.e., the local static pressure) and on the in-
tensity of the UV light excitation. The response of the red component only depends on
the intensity of the excitation. A camera takes two consecutive pictures of the painted
surface, the first one through a blue filter and the second one through a red filter. The
ratio of these two pictures, referenced by the same ratio obtained wind off, is the image
of the static pressure field. The external pressure taps, located on the wing, are used
to calibrate the measurement procedure.

Mach number, angle of attack, and drag measurements were systematically cor-
rected for upwash, wind-tunnel calibration, walls, sting line, and fuselage cavity pres-
sure in order to obtain the aircraft data in free-flight conditions. The transition was
tripped, applying carborundum grains at 5% of the local chord on both sides of the
wings, tail, pylons, and nose. The turbulent transition was verified with acenaphtene
visualizations. No measurements of the model deformation under load are available.
Several complete polars were measured at several test conditions around the flight
cruising Mach number. The data are properties of Piaggio Aerospace and are confiden-
tial. The absolute values of the coefficients were then omitted.

4.2 Numerical configurations

A first setup of a 2-way FSI analysis of the P1XXmodel, based on RBFmesh morphing,
was made coupling the fluid dynamic CFD++ solver with the structural Nastran code.
That activity, published in 2012 [68], signed the beginning of a collaboration between
Piaggio Aerospace and the university of Rome “Tor Vergata” that continued within EU
research programmes. The work here presented is a deepening of that study, using
ANSYS Fluent in place of CFD++ and extending the FSI analysis to the modal super-
position approach.

The setup of the procedures consisted in the preliminary preparation of the nu-
merical configurations and in the coupling of the blocks summarized in figure 3.3 and
3.5. In the 2-way workflow, the load mapping between the CFD and the FEM domains
was performed by the procedure implemented in the ANSYS Fluent solver in which
the data are mapped using a zeroth-order interpolation [69]. The reason of this choice
is simply because when this work was in progress, the RIBES mapping procedure was
not yet available. This analysis gave, however, the opportunity to quantify the ANSYS
procedure mapping error and to evaluate its influence on the FSI analysis of a wing.

2The paint application was found to have an impact on the forces measurements. The pressure
measurements were then performed in a separate session and provided as a separated data set.
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4.2.1 CFD analysis

Free-flight conditions were numerically simulated. The fluid dynamic computational
domain generated is a multiblock structured hexahedral grid with farfield located at
around 30MAC (Mean Aerodynamic Chord) from themodel. All aircraft surfaces were
adiabatic viscous and the boundary layer was solved up to the wall. O-grid topologies
were generated around the whole model. The cells were clustered on the walls in order
to keep a dimensionless wall distance Y+ between 0.5 and 1 in the analysis conditions.

The non-dimensional wall distance for a wall-bounded flow is defined as

Y+ =
u∗y
ν

where u∗ is the local friction velocity, y is the distance to the nearest wall and ν is the
kinematic viscosity. The formulations of the friction velocity and the kinematic viscosity
are

u∗ =

√

τw
ρ
, ν =

µ

ρ

where µ is the dynamic viscosity, ρ is the fluid density and τw is the wall shear stress
expressed as

τw = µ

(

∂u

∂x

)

y=0

The wall normal cells dimension growth rate is lower than 1.3. Around the airfoil
there are 220 elements and 110 on the wing in spanwise direction. The total grid
dimension is 14 million of volume elements (figure 4.2). No grid sensitivity analysis
was performed. The selection of the grid topology, the choice of the domain extension,
the wall cells clustering, and the total mesh dimensions derive from guidelines for this
type of analyses and from extensive grid sensitivity assessment activities performed
against the well known DLR F6 experimental test case. It, furthermore, derives from
experiences on several validation campaigns on other non-public experimental data.

Steady compressible RANS computations, using the density-based solver, an im-
plicit time integration scheme, and second-order upwind spatial discretizations, were
performed. The wind tunnel static pressure, temperature, and velocity were imposed
at farfield. Back pressure was imposed at the domain outlet and adiabatic viscous wall
boundary condition on the model surfaces. The flow field is assumed to be symmetric.
The half domain was then modelled.

The flight condition at which the comparisons were performed was Mach 0.8 and
Reynolds 4 millions and refer to the design cruising aircraft Mach number. The angle
of incidence was 1.4 deg. This value was selected according to the PSP measurements
available. The two-equation realizable k − ǫ turbulence model [70] was used together
with a near-wall correction in the inner boundary layer region. Such approach should
ensure proper accuracies in regions where potential velocities gradients would not
guarantee Y+ values lower that 1.
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Figure 4.2: P1XX - fluid dynamic domain of the aircraft.

two-layer near-wall correction - The principle is to divide the domain into a viscosity-
affected region and a fully turbulent region delimited by a turbulence Reynolds
number in which the reference length is the minimum wall-normal distance of the
cell centres [69]. In the region in which the computed Reynolds number is below
200, the one-equation model of Wolfshtein [71] is applied. The turbulent viscosity
µt and dissipation rate ǫ are, here, corrected and smoothly blended with their high
Reynolds number definitions from the outer region.

4.2.2 FEMmodel and modal analysis

Figure 4.3 details the wind tunnel model structure. The wing root extends into the
belly fairing and is bolted to the central balance block. The wing root region, the
bolts, and the balance structure are much stiffer than the external wing. The model
deformation was then assumed to be limited to the exposed part of the wing. This
simplification is probably not true if applied to the horizontal tail, but its influence
should be of a lower order of importance compared to the measurements tolerance.

The structural FEM model was limited to the external wing region and was con-
strained at the wing/fuselage junction section. The wing is fully steel-made. The
domain was then developed using solid hexahedral elements within the whole wing
volume (figure 4.4). The total model dimension is 32100 nodes and it comprises 27666
solid elements and 7363 auxiliary shell elements (with negligible stiffness and mass)
added on the skin to define the wetted interface. The mass of the wing structural
model is 7.89 kg.

The modal analysis was performed evaluating up to 20 natural modes of the struc-
ture. Figure 4.5 plots the cumulative mass contribution of each mode by the progres-
sive summation of their Effective Mass Participation Factors for the most relevant type
and direction, namely the vertical translation and rotational factor along Y axis. The
evaluation of EMPFs is used, in complex systems characterized by several randomly
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Figure 4.3: P1XX - detail of the wind tunnel model assembly.

Figure 4.4: P1XX - FEM mesh of the wind tunnel model wing.

contributing modes, to evaluate how many modes to select to reach a certain percent-
age of the total system mass. Best practices suggest to involve a number of modes so
that the summation of their effective participation factors reaches a threshold value of
around 80% of the total mass. Such a target is, in general, not necessary for FSI analy-
sis. This assumption will be, however, confirmed by the results of the modal analysis
following reported. It was, in fact, decided to extract only six modes to be used to
populate the modal base. With this number, the percentage of total mass contributing
to the vertical translation and rotation along Y direction is respectively 52% and 18%.

The frequencies and shapes type of the six modes extracted are reported in table
4.1. The last two columns refer to a solution quality check on the FEM model made
converting all the elements from linear to parabolic (increasing the size to 123820
nodes) and using the finer model as reference. The convergence error (last column)
with respect to the reference is less than 1%.

4.2.3 Mesh morphing setup

The morphing action has been limited to a mesh region surrounding the wing surface
and contained within a cylinder. The RBF problem is defined by selecting a number
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Figure 4.5: P1XX - Sum of modal mass fraction of first 20 modes.

Table 4.1: P1XX - computed structural modes of the model wing.

Mode Shape Frequency (linear el.) Frequency (parabolic el.) Error

Hz Hz %

1 Bending 1 72.89 72.74 0.21

2 Bending 2 251.14 249.93 0.48

3 Bending 3 541.07 537.11 0.74

4 Bending 4 592.96 590.37 0.44

5 Torsion 684.23 683.50 0.11

6 Bending 5 1004.59 995.37 0.93

of source points on the boundaries and by imposing them the required displacement.
Figure 4.6 details the RBF configuration. The source points are divided within three
sets. The first set contains the limits of the fixed domain defined by a uniformly dis-
tributed number of points (red points in figure 4.6) on the limiting boundary cylinder.
The second set contains all the points of the aircraft surface, with the exception of the
wing, to which a zero displacement is imposed. The last set contains the nodes on the
wing (green points in figure 4.6) to which the RBF solution, obtained using the FEM
output, is prescribed. The points on the wing correspond to the nodes of the wing FEM
mesh.

A two-step approach was adopted to prescribe the deformation. In the first step,
the FEM nodes positions, and the corresponding computed displacement field, are
used to generate a small RBF problem limited to the wing surface. The task is per-
formed by an automatic tool that allows to extract the required information from the
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Figure 4.6: P1XX - domain defining the RBF fitting problem.

.bdf and the .pch files 3. The mesh smoothing process, that accounts for the defined
limiting boundary and the fixed position prescribed to the other aircraft walls, is per-
formed within the second step in which the RBF problem is setup taking as input the
RBF solution of the first step. This procedure is a trick that provides a smother solu-
tion and better quality of the morphed mesh. For both steps, the linear RBF ϕ(r) = r
with global support was adopted.

If the centres density is fine enough, the linear RBF is a choice that guarantees a reasonable
fast solution and a smoothing process with the minimummesh distortion. A higher order
RBF (as the cubic one) can be useful to gently control surfaces using few centres.

The RBF problem, in this test case, is based on about 60000 source points. The
smoothing process of the complete CFD mesh took 209 seconds on a PC equipped
with a Quadcore Intel i5 2.67 GHz and with 8 GB of memory. A check of the morphing
action was performed each time by verifying the skewness of the cells. No appreciable
quality degradation was observed in the range of geometric deformations involved in
the performed analyses.

4.3 2-way FSI analysis

The 2-way FSI solution was obtained applying the workflow sketched in figure 3.3. The
CFD domain is adapted according to the RBF mesh morphing setup described in the
previous section. The cycle starts from the CFD solution obtained on the undeformed
geometry and progresses restarting each run from the previous computation. The plots

3the .bdf and the .pch files are respectively the standard input and output of the Nastran solver that
contain the FEM problem and its solution.
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in figure 4.7 report the typical coefficients convergence histories of a restarted compu-
tation. The first 10000 iterations refer to the solution obtained on the rigid model from
scratch. The following curves, after the jump, describe the typical behaviour obtained
on elastic models restarting the run from the converged rigid solution (in the plots the
first cycle of the 2-way analysis is reported). When starting from scratch, a complete
convergence was reached after 4000 iterations. When restarting the computation of a
deformed geometry from the rigid solution, 1000 iterations were sufficient.
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Figure 4.7: P1XX - typical restart convergence histories.

The cycle of the workflow was repeated until no more variation in loads and de-
formation was detected. Since the FEM field (total displacement) refers to the rigid
configuration, at each cycle the CFD mesh was restored to the undeformed configura-
tion before restarting the fluid dynamic computation. In this analysis, three iterations
between the two solvers were sufficient to obtain a converged static solution (figure
4.8).
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Figure 4.8: P1XX - lift and drag coefficients convergence histories in the 2-way FSI cycle.

The CFD loads were mapped on the FEM mesh using the interpolating procedure
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implemented in ANSYS Fluent. The output is directly written in the FEM solver for-
mat. An error due to the different surface discretization adopted in the CFD and FEM
domains is expected. Figure 4.9 evidences the difference between the two meshes in
the root leading edge region. Only pressure loads were extracted to be applied to the
FEM model. The contribution of viscous forces to the deformation of the wing were
neglected. This assumption is in general valid for lifting surfaces because it is reason-
able to neglect the viscous lift in comparison to the pressure component and because
the aeroelastic influence of viscous drag is negligible. The wing drag module is, in
fact, in the order of 20 times lower than lift and acts in a direction in which the wing
moment of inertia is very high.

Figure 4.9: P1XX - detail of FEM (blue) and CFD (yellow) surface wing meshes overlap.

In order to evaluate the error introduced by the mapping procedure, the Z compo-
nent of the integral value of the mapped loads on the wing surface has been calculated
both on the CFD solver, before the extrapolation, and on the FEM code after having
imported the loads file. This comparison has been performed for all cycles and is re-
ported in figure 4.10 and table 4.2. A systematic overestimation, in the order of 2.5%,
on the load applied to the FEM model was observed. A significant higher error on
the X force components was present but, as stated previously, its impact was consid-
ered irrelevant. The quantification provided, however, the sense of how significant its
influence might be, in general, for non lifting surfaces.

Figure 4.11 compares the 2-way FSI solutions with the solutions obtained on the
undeformed geometry and with the experimental polars. The computed lift coeffi-
cient reduction, caused by the deformation of the wing, is lower than 0.015. The lift
value, at constant incidence, of the elastic solution moves closer to the experimental
lift curve but it is still overestimated of about 0.2 degree compared to the measure-
ments. It is difficult to evaluate if the incongruence on incidence is due to a limit
in the correction criteria adopted for the extrapolation of the experimental measure-
ments or to uncertainness to be ascribed to the CFD configuration. Considering that
the correction of the wind tunnel angle of incidence is a very challenging task due to
the differences between the tunnel and the free flight configuration (wall blockage ef-
fect and presence of the string line), the entity of the difference observed can, however,
be considered relatively modest. The drag difference, compared to the experimental
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Figure 4.10: P1XX - FZ from FEM and CFD.

Table 4.2: P1XX - errors on load mapping.

Iteration FZ FEM FZ CFD Error

N N %

Undef. 2095.5 2047.3 2.353

1 2026.0 1976.9 2.485

2 2028.7 1979.7 2.478

3 2028.6 1979.5 2.476

polar, conversely, remains almost unchanged (in the order of 4-5 drag counts), which
means that the wing deformation is modest enough to poorly impact the induced drag.
The observed differences are, however, in the order of the declared measurement error
tolerances of the balances.
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Figure 4.11: P1XX - coefficients comparison with experiments.

The wind tunnel model is extremely stiff. A displacement of the wing under aero-
dynamic loads, in the order of 5 millimetres, was anyway observed at the wing tip (the
model span is 0.6 m). The contour plot reported in figure A.1 in appendix evidences
the displacement of the whole wing computed by the 2-way procedure after three it-
erations. A qualitative view of the wing deformation under load (with an amplified
scale) is given in 4.12.
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Figure 4.12: P1XX - wing deformation amplified 10 times.

4.4 Modal FSI analysis

Up to six structural vibrating modes were extracted from the FEM modal analysis and
used for the implementation of the modal FSI procedure. For each mode, an RBF so-
lution was computed and stored in a database in order to generate a parametric mesh
in modal coordinates. Six modal analyses, with six parametric mesh formulations, im-
plemented adopting a rising number of superimposed modal shapes, were performed.
This approach, in addition to the modal base qualification, provided the sensitivity on
how is the influence of the modal base dimension on the final solutions. Figure 4.13
displays the shapes of the first six wing vibrating modes whose natural frequencies are
reported in table 4.1.

Figure 4.13: P1XX - first six vibrating modal shapes of the wing.

According to the workflow described in figure 3.5, the dynamic mesh morpher with
the stored RBF solutions and the modal forces calculation module are initialized to be
available for recall during the CFD computation. The mesh is updated, according to
the modal coordinates computed during the progress of the run, every 20 iterations.
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4.4.1 Modal base qualification

The adequacy of the modal base was verified using the first six modes. The modal base
qualification helps to evaluate in advance how many modes are needed to reproduce
a static deflection in coherence with the deformation that would be evaluated by the
FEM analysis of the structure under the same aerodynamic loads. The check can be
conducted on both CFD and FEM grids since the modes are independent from the
mesh. It consists in the generation of the static deflection combining a certain number
of modes and in its comparison with the FEM solution on the rigid model. Modal
coordinates are evaluated by the CFD analysis of the rigid model. The qualification is
useful in situations where the complete 2-way results are not available. It is included
here for the sake of completeness even if both the full 2-way and the modal analysis,
using up to six modes, are available.

The procedure to inspect the quality of the approximation, when only few modes
are retained, consists in subtracting the approximated shape, obtained by modal su-
perposition, from the elastic shape obtained by the FEM analysis. The modulus of
the vectors obtained represents the approximation error. The resulting field can be
inspected using standard post processing methods (i.e., plotting the deformed shape).
The behaviour of the errors computed with the P1XX selected modal base, plotted onto
the FEM mesh, is shown in figure 4.14. In order to emphasize the error distribution
along the geometry, the error vectors were amplified by a factor 2000 in all plots with
the exception of the plot reporting the error using only the first mode (left top figure)
which was amplified by a factor 200. The first mode shape is, in fact, by far the most
dominant mode and matches the bending deformation of the wing.

Figure 4.14: P1XX - modal truncation error retaining from one to six modes.

The shape of the errors can be compared with the structural natural modal shapes
of figure 4.13. It can be seen that they look similar to the shape of the next mode
dropped. For example, the error using the first mode only, looks to be shaped like
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the second mode. Similarly, the first and second modes produce an error shape very
similar to the third mode. When the third and fourth modes are added, the shape
looks to be a combination of the fourth and fifth modes (it is worth to observe that
their frequencies are quite close). By adding the fifth mode, the shape of the sixth
mode can be clearly recognized.

The table 4.3 quantifies the results of the modal base qualification. The columns
report respectively the number of modes involved, themodal coordinates computed by
the rigid CFD model and the maximum displacement error evaluated using both CFD
(third column) and FEM (last column) meshes. Taking as reference the displacement
of 5 millimetres computed at the wing tip by the 2-way procedure, we can assume
that the adoption of only the first mode would produce an error on deformation in the
order of 7%. Adopting the first two modes the error would reduce to 0.7%. Such an
error is approximatively maintained when adding more modes.

Table 4.3: P1XX - modal base qualification using the first six modes.

Modes Modal Maximum error Maximum error

retained coordinates q on CFDmesh on FEMmesh

mm mm

1 0.00319593 0.362 0.361

2 -0.00017681 0.035 0.035

3 -0.00001032 0.034 0.032

4 0.00001273 0.044 0.043

5 -0.00000491 0.047 0.042

6 -0.00000502 0.035 0.030

It can be preliminarily assumed that two modes might be enough to setup a rea-
sonable accurate modal analysis. We will have the confirmation of the correctness of
this assumption comparing the solutions obtained by the six modal analyses in which
the parametric mesh formulation was implemented adopting a rising number of su-
perposed modal shapes.

4.5 Comparison between 2-way and modal solutions

Three points on the wing trailing edge were taken as references to monitor the geom-
etry displacement. The pressure distribution was compared at four spanwise sections.
The location of the three points and the four sections are displayed in figure 4.15.

Table 4.4 and figure 4.16 report the modal coordinates resulting from the compu-
tation adopting the superposition of the first six structural modes of the wing. It is
evident how the first mode is by far dominant in comparison to the others.

The obtained modal solutions were compared to the 2-way FSI solution and to the
experimental data. The comparison with the experimental drag polar is reported in
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y/b = 0.7

y/b = 1

y/b = 0.2

y/b = 0.6

y/b = 0.8

y/b = 0.4

Figure 4.15: P1XX - location of monitored points and sections on the wing.

Table 4.4: P1XX - values of modal coordinates.

Mode Modal coordinate q

1 0.00303478

2 -0.00017124

3 -0.00001094

4 0.00001200

5 -0.00000697

6 -0.00000495
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Figure 4.16: P1XX - 6 modes modal coordinates.

figure 4.17. The differences between the elastic solutions and the solution obtained
with the rigid model (undeformed geometry) are listed in table 4.5. All the aeroelastic
numerical configurations gave, from an engineering point of view, almost the same
solution. The maximum difference in lift coefficient between the several elastic models
is lower than 0.0006 whereas the range of drag coefficients variation is limited within
0.2 drag counts.

Figure 4.18 and table 4.6 report the computed displacement of the three monitored
points on the wing trailing edge for all numerical configurations. The maximum dis-
placement is close to 5 mm which, referred to the model dimension, is slightly lower
than 1% of the wing semispan. Because of the larger chords and thickness in the inner
region, the displacement of the point at the kink section (y/b = 0.4) is, as expected,
very low. It can be assumed that the points displacement reach the ultimate values by
adopting only the first two natural modes. Furthermore, the values reached are in very
good agreement with the displacements estimated by the 2-way FSI analysis.

Swept wings have a strong coupling between aerodynamics and structural defor-
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Figure 4.17: P1XX - modal and 2-way solutions.

Table 4.5: P1XX - variation respect
undeformed.

Case ∆CL ∆CD

dc

2-way -0.0145 -7.0

1 mode -0.0142 -6.8

2 modes -0.0141 -6.9

3 modes -0.0143 -6.8

4 modes -0.0141 -6.8

5 modes -0.0147 -7.0

6 modes -0.0147 -7.0

mation. This coupling grows with the value of the sweep angle. More in detail, the
coupling is between the wing box bending, which acts along its elastic axis, and the
aerodynamic twist, which is referred to the streamwise wing section. In sweptback
wings, the coupling consists in a twist increase as a consequence of the wing bend-
ing under positive lift (pitching down rotation at tip respect to the root). The wing
deformation, therefore, has a direct unloading effect on the outer region of the wing4.
Figure 4.19 empathizes this mechanism by amplifying the wing deformation. It is clear
how the wing tip of the bent wing has a lower aerodynamic incidence respect to the
undeformed geometry.

Figure 4.19: Aerodynamics and structural deformation coupling mechanism.

If the angles of attack of spanwise sections of a wing are not equal, the wing is said to have
twist. If the angle of attack at the tip is less than that at the root the wing is said to have
wash-out or negative twist [72].

In order to evaluate the capability to correctly capture this phenomenon, the vari-
ation of the wing tip section angle of incidence was monitored and compared to the

4For the same inner workings, forward-swept wings, with a conventional structure arrangement,
have a decreased divergence speed compared to back-swept wings [3] because to a bending increase
follows a wing tip load raise which further contributes to the structural bending.
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Figure 4.18: P1XX - monitored points displace-
ments.

Table 4.6: P1XX - values of displacements of moni-
tored points.

y/b = 0.4 0.7 1

∆Z ∆Z ∆Z

Case mm mm mm

2-way 0.320 1.923 4.852

1 mode 0.251 1.811 5.188

2 modes 0.307 1.938 4.853

3 modes 0.312 1.933 4.871

4 modes 0.315 1.927 4.890

5 modes 0.318 1.935 4.891

6 modes 0.321 1.933 4.879

2-way solution. Figure 4.20 and table 4.7 report the result of this comparison. The
absolute geometric twist increment under load is, in general, lower than half a degree.
Also analysing the twist variation it can be stated that the solution does not change
significantly when adopting a number of modes greater than two. Furthermore the
modal solution replicated accurately the 2-way deformation.
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Figure 4.20: P1XX - wing geometric twist variation.

Table 4.7: P1XX - values of wing geo-
metric twist variation.

Case ∆ε (y/b = 1)

deg.

2-way -0.443

1 mode -0.504

2 modes -0.418

3 modes -0.428

4 modes -0.430

5 modes -0.450

6 modes -0.445

The plot of figure A.2 in appendix highlights the geometric differences between the
solution of the 2-way analysis and the modal solution obtained by accounting for the
first six modes. The contour values are the modules of the vectors obtained subtracting
the displacement estimated by the 2-way procedure from the deformation obtained
with the modal analysis. The maximum difference is lower than 0.03 mm.
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Both 2-way and modal FSI methods are based on the linear assumption (the first
because of the setup of the FEM analysis and the second for definition). If we con-
sider that the load mapping procedure applied in the 2-way computation introduced
an overestimation in the order of 2.5% on the integral force acting on the wing FEM
model, it might be reasonable to expect the method to overestimate the deformation by
a similar percentage (in the order of 0.12 mm). The geometric differences between the
modal and the 2-way solutions are, conversely, practically insignificant (in the order of
0.5% of the maximum displacement). The conclusion is, therefore, that the influence
of the error introduced by the interpolating mapping procedure is negligible, for the
analysis of lifting surfaces, or that the modal approach suffer of an uncertainness of
the same order of the error introduced by the load mapping process (i.e. the modal
approach overestimates the deformation by 2.5%).

No information is available on the deformation of the wind tunnel model during
the experimental tests. No direct displacement validation of the numerical solutions
is then possible. The aero/structural coupling induced by the presence of the sweep
angle, together with the transonic regime of the flow field, provides, however, an in-
direct indication of the accuracy of the elastic models. The recompression structures
on the wing surface, that develop in transonic conditions, are in fact extremely sensi-
tive to any geometric variation. If properly captured, the estimated aerodynamic twist
induced by the wing deformation should find a confirmation when comparing the nu-
merical with the experimental pressure distribution. The contour plots in figure A.3 in
appendix provides a global view of the pressure distribution on the wing estimated by
the two flexible numerical models. In the same figure, the experimental measurements
are reported with the same scale suggesting a good agreement with the computations.
A deeper evaluation is possible analysing the solutions at the four monitored wing sec-
tions indicated in figure 4.15. Such comparison is detailed in the four plots of figure
A.4 in appendix where also the solution obtained on the rigid model is reported. Very
good agreement is in general obtained in all sections in most parts of the flexible upper
wing surface. Some differences are observed in terms of higher waviness in the most
external sections indicating that the effect of the wing deformation is, as expected,
aerodynamically significant only in the outer region. Even if differences from exper-
iments are still present, the pressure distributions computed by the flexible models
better match, compared to the solutions obtained on the rigid model, the experimen-
tal values, particularly in term of shock strengths and position. This agreement is a
confirmation, as stated before, that the aeroelastic mechanism is properly captured by
both 2-way and modal FSI numerical models.

Small disagreements are evaluated in the pressure recovery at the wing trailing
edge where the numerical solutions do not match the experimental values. In the
pressure decreasing region, in the lower side, the pressure values are slightly uni-
formly overestimated. This difference is, however, negligible at a inner sections but it
becomes little stronger in the recovery region where a higher load is computed. The
direct consequence of this disagreement is an overestimation of the lift coefficient, as
clearly evidenced when comparing the experimental lift polar with the numerical so-
lutions (figure 4.11).
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5
Aeroelastic analysis of the RIBES wing
model

R
IBES is the acronym of “Radial basis functions at fluid Interface Boundaries to En-
velope flow results for advanced Structural analysis”. It is the name of a European
research project led by the University of Rome “Tor Vergata” and fundedwithin

the 7th framework aeronautics programme JTI-CS-GRA (Joint Technology Initiatives -
Clean Sky - Green Regional Aircraft). The project started December 2014 and was
officially completed December 2016. Focus of research was the improvement of the
accuracy of CFD-CSM based aeroelastic analysis methods. It, furthermore, allocated
a significant amount of the budget on the setup of an experimental wind tunnel test
campaign aimed to the development of a database for the validation of FSI numerical
tools.

The assessment activity detailed in the previous chapter proved the accuracy of the
proposed CFD and FEM solvers coupling methodology and provided useful guide-
line about the applicability of the modal approach for static aeroelastic analysis of a
strongly coupled aerodynamic/structural phenomenon. The wing structural model
was, however, very simple and no sensitivity was provided about the quality of the
solution that would be obtained facing the problem of a more realistic wing structural
configuration. Although several experimental static and dynamic aeroelastic test cases
are available (e.g. Agard 445.6, HiReNASD, EuRAM), the literature is relatively poor
concerning wind tunnel tests with realistic aeronautical wing structures. The RIBES
experimental campaign was setup with the express objective to cover this gap.

5.1 Experimental measurements campaign

The RIBES test case should accomplish the task of being significant for a realistic wing
design problem and of being suitable to be experimentally verified in a low speed wind
tunnel (in order to contain costs). The first requirement is explicitly accomplished de-
veloping a typical wing box structure referring to a traditional realistic wing topol-
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ogy (spars, ribs and skin) and by an aerodynamic design aimed to replicate as much
as possible, at wind tunnel flow conditions, a realistic reference target load distribu-
tion (specifically, the wind tunnel model should be aerodynamically designed to repli-
cate as much as possible an elliptical spanwise load shape). The latter requirement
is achieved by dimensioning the wing model so to be able to produce significant de-
formation with moderate loads. Unfortunately, the adoption of a metal structure and
the scaling effects to dimensions compatible with a typical low speed wind tunnel test
section, act in the opposite direction.

The requirements for the wing tunnel measurements and for the model were:

• for the tests

– static pressure measurements under steady flow conditions;

– forces and moments measurements;

– model deformation measurements;

– stresses measurements on most significant structure locations;

• for the model

– scaled physical model of a metallic wing type of structure;

– rectangular shape and small thickness;

– installation of strain gauges and pressure pick-up points at its surface.

The model deformation was reconstructed applying photogrammetric techniques
and using a laser scan. The principle of photogrammetry is to obtain a stereoscopic
visualization by taking a couple of images simultaneously using two cameras installed
with different angle respect to the model. The 3D reconstruction process consists in
recognizing the position of a matrix of markers opportunely placed on the model sur-
face and to estimate the model deformation by the visual 3D evaluation of the dis-
placement of this discrete number of points with respect to their known static posi-
tions (figure 5.1).

 

Camera 1

Camera 2

P1

P2
P3

P4

Figure 5.1: Geometric principle of stereoscopic visualization.
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This technique is based on the principle that a set of points in space occupies differ-
ent positions in two images taken from different locations. The 3D points coordinates,
in an absolute frame, are derived from their 2D locations in the images according to
the principle that every point is projected onto a particular point in a camera sensor
plane and has to lie on a straight line.

5.1.1 Wind tunnel model design and manufacturing

The RIBES test article design had a long development process in which several iter-
ations, with the model manufacturer and the topic manager of the project, leaded to
reconsider the original wing configuration proposal. The first topology was thought
with the vision to include an aero-structural coupling by adopting a sweep angle and
to design a wing suitable for a reference realistic aircraft. A complete structural and
load similitude at testing conditions of a scaled wing, however, would have required
a relatively high speed which is not compatible with a typical not pressurized low
speed wind tunnel with a sufficient large test section. Furthermore, a simple scaling
of a “real wing” is not feasible for manufacturing reasons (the thickness of the skin
would reduce to impracticable dimensions). A design, expressly customized for our
purpose, had then to be planned. The aerodynamic design of the wing was made se-
lecting an opportune geometric twist and designing a new airfoil specifically with the
objective to reproduce as much as possible, at wind tunnel conditions, the pressure
distribution the reference aircraft would exhibit in cruise. The complexities encoun-
tered related mainly in the attempt to maximize the wing deformation (in order to
facilitate the displacement visualization) maintaining the wing box topology and con-
straining the sheet metal thickness to dimensions that allow a safe model assembly
by rivets. Preliminary analyses of candidate dimensionings confirmed the difficulties
in obtaining a tip displacement, under a maximum measurable loads (by wind tunnel
balances) in the order of 100 kilograms of lift, higher that 1% of the wing span1. It
was then decided to release the requirement of referring to a realistic aircraft (in order
to orient the design only on the measurements requirements without constraints), to
eliminate the sweep angle (in order to focus on the structural verification aspect of the
FSI mechanism without interferences of other effects) and to comply the manufacturer
suggestion to simplify the model geometry (in order to reduce costs and risks of man-
ufacturing uncertainness). Even if a significant amount of the effort allocated on the
RIBES project was dedicated to the model design, a deep detailing of its process is not
considered strictly relevant to the main objective of this thesis and would require a
long deviation that, due to lack of space, will be here avoided. Only the main steps of
the test article design will be then following reported.

Among the configurations that were designed and verified aerodynamically and
structurally, a straight wing 1.6 meters wide, with a root chord of 600 millimetres and
0.7 as taper ratio, was selected as final configuration (figure 5.2). In order to simplify
its manufacturing, no twist was adopted. The skin is simply obtained by lofting a

1Amore detailed description of the genesis of the original starting RIBESmodel candidate is reported
in [38].
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single curvature surface between the root and the tip airfoils geometries (the airfoil is
maintained unchanged along all span).

Figure 5.2: RIBES - layout and planform dimensions.

The airfoil was designed starting from the Göttingen 398 scaling the original shape
to a thickness t/c = 11% and redesigning the leading edge in order to improve the stall
performance. Figure 5.3 reports the designed wing section.

Figure 5.3: RIBES - airfoil of the wing.

Structural dimensioning

The wing box is a typical aeronautical structure with two C-shaped spars and ten ribs.
The front spar is located at 20% of the chord and is maintained orthogonal to the
symmetry plane. A moderate negative sweep angle (in the order of -0.3 deg.), referred
to the line passing through the 25% of the chords, is then present. The rear spar is
located at 65% of the chord. The reference surface is 0.816 m2.

The external skin is divided in four parts: an upper, a lower a leading edge and
a V-shaped trailing edge panel. They are joined to the structure by flush head Cher-
ryMAX rivets. The model is connected to the wind tunnel balance by a flange and a
tubular rod (figure 5.4). The wing components were subjected to two treatment before
assembly. The first was an Alodine treatment to prevent corrosion while the second
consisted in a primer to prepare the wing structure to paint. Figure from A.6 to A.8 in
appendix report a series of pictures of the model structure assembling and manufac-
turing process.

The model was dimensioned verifying the design at the target operative condition:
flow speed equal to 40 m/s and around 60 kilograms of lift force. The CFD domain
used in this phase reproduced the test section, including the inlet convergence ele-
ment, of the selected wind tunnel facility (figure 5.5).

Ubaldo Cella



5 Aeroelastic analysis of the RIBES wing model 57

Figure 5.4: RIBES - test article CAD model.

The mesh was composed by 3.5 million of hexahedral elements. The boundary
layer was solved up to the wall of the wing model while wall functions were applied
to the tunnel walls. In figure 5.6 the obtained spanwise load distribution (left) and
the shape of pressure distribution on the wing surface (right) is reported. The load
is enough close to the target spanwise elliptical distribution. In this condition, 60
kilograms of lift is generated with a lift coefficient equal to 0.74.

Figure 5.5: RIBES - wind tunnel CFD domain.

The FEM analysis was essential to dimension the thickness of the sheet metal com-
ponents and to reinforce the regions of stresses concentration. It was, furthermore,
adopted to check the plates buckling onset. This aspect was, in fact, the main driver in
dimensioning the model. In order to maximize the wing deformation, the target thick-
ness of spars and skin should be minimized. With this configuration most of the load
is carried out by the skin. The buckling verification identified instability problems on
the upper skin in the root region, as evidenced in figure 5.7, where plates are subjected
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Figure 5.6: RIBES - aerodynamic load on the wing surface.

to maximum compression2.

Figure 5.7: RIBES - instabilities observed on the upper panel.

Before acting on the thickness of the spars, a new structural solution was studied.
In addition to a variable ribs distribution along the span, aimed to reduce the distance
between the supported opposite edges of plates, two stringers were added to the skin
in the upper panel and extended up to the fourth rib to further reduce the buckling
multiplier. The new configuration demonstrated to improve the buckling behaviour
maintaining unchanged the thickness of the elements. The eigenvector associated with
the first positive buckling eigenvalue (which was in the order of 1.2) is shown in Figure
5.8 (left). The following study was focused on optimizing the stringers distribution
(that became three in the final configuration) and plates properties.

It has to be noticed that the plates instability guided the design muchmore than the
material stress limits. As evidenced in figure 5.8 (right) in fact, the maximum stress
observed in design conditions is lower than 40 MPa which is very far from the limits of
the material (the adopted material is the 2024-T3 aluminium alloy which has a yield
strength higher that 270 MPa). From this point of view, the RIBES model dimension-

2The airfoil of the preliminary solution reported in figure 5.7 do not coincide with the final geometry
which was designed in a following phase.
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Figure 5.8: RIBES - results of the FEM verification.

ing followed an unusual philosophy. Aircraft wings design, in fact, is typically oriented
on weight saving adopting the minimum Factors of Safety, on the primary structures,
required by airworthiness authorities (in some case it is consider acceptable the struc-
ture to operate with plates in post-buckling conditions). The RIBES wing had as main
target the maximization of the deformability of the structure which oriented its di-
mensioning toward the minimization of the plates thickness (both spars and skin) up
to the minimum values acceptable for elements assembly.

The British Civil Airworthiness Authority reports the following definition [73]:

Factors of Safety (for static strength) - Design factors (proof factor and ultimate factor) to
provide for the possibility of loads greater than those expected in normal conditions
of operation, uncertainties in design and variations of structural strength, including
variation of strength.

Loads are defined as [74]:

limit load is the maximum load that the aircraft is expected to experience in normal op-
eration.

proof load is the product of the limit load and the proof factor (usually between 1.0 and
1.25).

ultimate load is the product of the limit load and the ultimate factor (usually equal to 1.5
unless otherwise specified).

Another important observation is that if the load is supported mainly by the skin,
plates buckling would cause the whole load to be transferred suddenly to the spars
which, if not properly dimensioned, might not be able to sustain the load. Thickening
the spars, on the other hand, would increase the stiffness of the model further reducing
the already moderate deformation (the maximum tip displacement computed never
exceeded 10 millimetres even reducing the safety margins to one). Although aircraft
industries usually assume a safety margin equal to one (or even lower) at limit loads
when dimensioning plates for buckling, the final strategy adopted for the RIBES wing
was to approach the design in a conservative way thickening the spars and assuming
a safety factor between 1.2 and 1.3 on maximum load at buckling onset. With this
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view, two plates 4 millimetres thick were added in the root region on the front spar
where concentrations of stresses were observed (figure A.5 in appendix). Table A.1 in
appendix lists the elements of the final wing configuration and their main properties.

Verification of the model geometry

The final assembled model was measured by a HEXAGON metrology electronic harm
(figure A.9 in appendix) in order to verify the correctness of the external shape. Some
differences from the nominal geometry were observed.

The assembly process was particularly complex. The forming of the leading edge
skin panel, in particular, was difficult due to the relative high thickness of the sheet
metal with respect to the low leading edge radius. The final assembled model evi-
denced the higher differences from the nominal geometry in this region. After some
aerodynamic verifications, it was considered the disagreement not to affect the mea-
surements considering the purpose of the test campaign. Figure 5.9 compares the
nominal and the measured geometries, at the 75% of the span, together with the 2D
pressure distribution at four degree of incidence. The check was also performed at
high incidence in order to verify that the peak of the minimum CP do not exceeds -
8 in the range of measurements we are interested in. The evaluation of the high lift
performance of the wing is not, in fact, object of interest of the planned tests.

Figure 5.9: RIBES - verification of the measured airfoil.

As evidences in figure 5.9, the difference between the nominal and the measured
geometry involved also a disagreement in the reference leading edge location (assumed
as the point, on a reference section, located at the maximum distance from the trailing
edge). The reference chord, on which the angle of incidence is refereed, was then
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slightly rotated in order to restore a coherent reference system (the difference between
the two references was around 0.6 degree).

Model instrumentation

The model was instrumented with 81 pressure taps along 6 sections. Table A.2 in
appendix lists their location and their number per section. The pressure was measured
around the whole airfoil at 37.5% and at 75% of the span respectively by 39 and 26
pressure taps. Four pressure taps are positioned on the other listed sections. This
choice allow to provide two complete pressure measurements and an indication of
the spanwise load distribution with a reasonable number of channels. Figures A.10
and A.11 in appendix show the pressure taps locations on the wing and detail the
installation of the tubes on the skin plates.

In order to verify the stress state of the structure under load, twenty-five (16 uniax-
ial Tokyo Sokki Kenkyujo FLA-3-23-5LT plus 3 rosettes Tokyo Sokki Kenkyujo FRA-3-23-
5LT with 3 signals) strain gauges have been installed on the wing model. The positions
were selected according to the solutions of the preliminary FEM analyses. Figures A.12
and table A.3 in appendix show the positions and lists the characteristics of all sen-
sors (rosettes are in bold font). The three channels rosettes measure the strain along
three directions (y direction and ±45 degrees) allowing to define the complete state of
strain including possible diagonal tension states. Figure 5.10 details the installation of
rosettes and unidirectional sensors. The left figure refers to the rosette located on the
lower skin panel, the right one shows the rosette in the middle of the front spar, close
to the root rib, and the two unidirectional strain gauges on the spar stiffeners.

Figure 5.10: RIBES - installation of strain gauges.

The installation of strain gauges are operated, after cleaning and sanding the sur-
faces, by glue and catalyst. The nominal resistance of sensors is 120 Ω with a declared
uncertainty by manufacturer of ±0.5%.

5.1.2 Test facility

The wind tunnel, in which the tests were performed, was the low speed facility of the
university of Naples “Federico II” (figure 5.11). It is a closed circuit with a test section
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2 meter wide. The airflow speed limit is 45 m/s. The balances measurement limits are
1000 N for the lift and 200 N for the drag. The turbulence level is in the order of 0.1%.

Figure 5.11: RIBES - circuit of the wind tunnel test facility.

The model is installed on the side wall of the test section as a cantilever (figure
5.12). The test matrix is planned to focus the attention around the design lift coefficient
(CL = 0.7). Transition trips were located before 5% of the chord on both side of the
model in order to guarantee a fully turbulent boundary layer (figure A.13 in appendix
shows the zig-zag tape used to set the transition during preliminary installation tests).
Lift, drag, moment and pressure coefficients have been measured in all test matrix
runs. Strain gauges measurements and deformation visualization were reported at the
most significant polar points.

Figure 5.12: RIBES - wind tunnel model installation.

The flow speed of the tests ranged between 30 and 40 m/s to which correspond
Mach numbers approximatively from 0.1 to 0.12. Referring to a model MAC of 515
mm, the Reynolds number ranges between 1 and 1.4 millions. Higher speed were not
investigated due to the excessive loads generated on the model.
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The displacement was measured detecting, by photogrammetry and laser scan, the
position of a set of markers located on the wing surface. Figure A.14 shows the mea-
surements of the wing tip displacement. In order to correct themeasurements from the
effect of deformation of the supporting system, the inclination of the balance was mea-
sured during the test (figure A.15 in appendix) and used to restore the wing measured
displacement to the value it would assume if rigidly constrained. Further refinements
of correction were adopted detecting the deformation of the support by applying an
inclinometer at the root structure of the wing.

5.2 Setup of FSI numerical models

A 2-way and a modal analysis procedure, similar to those implemented and validated
against the P1XX aircraft wind tunnel model, were here setup and validated against
the RIBESwing measurements. In this case the attention was focused on the structural
aspects of the test case. No coupling with aerodynamics is, in fact, expected since no
sweep angle is present. Furthermore, even though the high camber of the airfoil causes
to generate a significant moment coefficient, the high torsional stiffness of the model
suggest not to expect appreciable wing tip variation of incidence under load.

The mapping procedure adopted to transfer loads from the CFD to the FEM do-
main, in the 2-way workflow, was the RIBES module described in section 2.3.2 which
reduces to zero the errors on forces.

5.2.1 Measured model reconstruction

Eight sections of the manufactured model were measured from root to tip including
the stations of the pressure taps lines. A CADmodel was generated from the measured
cloud of points. The procedure consisted in approximating the eight sets of measured
points (one per section) by NURBS curves whose parameters (order, control points
and knot vectors) were selected using an in-house developed optimization procedure
in which the objective function was the minimization of the maximum distance be-
tween the curves and the input points. The search criterion adopted was the heuristic
simplex based algorithm of Nelder-Mead [75]. The curves maximum deviation from
the measured geometry was contained within half millimetres maintaining the conti-
nuity on the third geometric derivative and acceptable waviness on curvature (figure
5.13).

A sweep surface, interpolating the eight curves, was used to generate the wing
skin. An acceptable spanwise quality of the surface was obtained but, since no mea-
surements were performed along the span, the quantification of the deviation from
the real model between sections was not possible. We are, anyway, confident that the
sections similitude and their spanwise density are sufficient to ensure a reasonable
accurate real model reproduction.

The internal structure topology was regenerated, in form of surfaces neglecting the
elements thickness, starting from the CADmodel of the nominal geometry and match-
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Figure 5.13: RIBES - detail of a CAD reconstructed model section.

ing the external loft surface generated to approximate the measured wing geometry.
With this procedure, a coherence between CFD, FEM model and real geometry should
be guaranteed. Figure 5.14 shows the generated 3D CAD model. The blue translu-
cent surfaces are used in the CFD model while the red entities refer to the internal
reconstructed structure.

Figure 5.14: RIBES - regenerated CAD model for numerical analyses.

5.2.2 CFD analysis

The experimentally measured coefficients were corrected from the effects of wall block-
age. The CFD numerical domain was then generated replicating the free-flight condi-
tions. A multiblock H-C structured mesh topology, with hexahedral elements, was
generated (figure 5.15). The pressure farfield boundary condition was set on surfaces
located 50 MAC in front, on the top, on the bottom and on the side of the model. The
pressure outlet surface is 60 MAC downstream the model. The grid is composed by
3.2 million of elements. The boundary layer was solved up to the wing surface. The
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first layer of cells was set to ensure Y+ lower that one. The layers growth rate from the
wall is in the order 1.2. About 200 cells are distributed on the wing sections and 80
spanwise. Compressible RANS computations, using the pressure based solver, were
performed adopting a coupled pressure-velocity scheme and second order spatial dis-
cretizations.

Figure 5.15: RIBES - CFD computational domain.

The wing polars of the rigid model were computed at V = 40 m/s. The convergence
of the computations was very fast. Three hundred iterations were sufficient to obtain
a converged solution at zero incidence (figure 5.16). The following points of the po-
lar were computed restarting the runs from the previous solutions and increasing the
angle of attack. In those cases 100 iterations were enough to converge.
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Figure 5.16: RIBES - coefficients convergence histories at α = 0 deg.
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5.2.3 FEMmodel and modal analysis

The FEM mesh was generated using ANSYS Meshing. It is composed of 97000 shell
elements distributed on surfaces extracted from the faces of ribs and spars and on
the reconstructed wing wet surface. The spar caps are joined to the skins linking the
common nodes at the locations of the fasteners. The same procedure was adopted to
join the stringers and the root rib to the skin. Figure A.18 in appendix reports the
map of the modelled junction points. In the case of the front spar caps, the discrete
junction involved the leading edge skin, the lower and upper panels (as on the real
model). Figure 5.17 sketches the plates overlap in the upper cap area of the front
spar. The other ribs caps were not modelled. Ribs and trailing edge skin are simply
continuously constrained to the skin. This model is probably not correct but it was
assumed this simplification not to affect significantly the solution.

Figure 5.17: RIBES - sketch of plates overlap in the front spar caps area.

The properties associated to the elements correspond to the thickness of the several
wing elements. The wing is constrained at the central web in the root rib location
where the real model is connected to the balance by the tubular rod. Figure 5.18 shows
the FEM model of the wing. The green area of the root rib highlights the cells where
constraints are applied.

The P1XX wing model, described in the previous chapter, was a fully steel-made
structure characterized by clearly identified global modal shapes. The RIBES wing
structure is much more complex. It is then reasonable to expect more complex modal
shapes and vibrating behaviour of the structure. A deeper modal analysis was then
performed computing up to 50 modes. The aim was to classify mixed modes by in-
specting the fraction of system mass participating in each eigen shape by the compu-
tation of their effective mass participation factor. This evaluation was performed for
sake of completeness since, according to what evidenced by the results of the modal
FSI analysis of the P1XX, it was showed not to be necessary to reach a large amount of
participating mass fraction in FSI analyses. This criterion is then not used to determine
the opportune dimension of the modal base. As already shown, in fact, the primary
procedure to provide, in absence of a complete 2-way FSI result, the indications on
the minimum number of modes to adopt in the modal FSI analysis implementation is
the modal base qualification procedure described in section 4.4.1 (the modal qualifica-

Ubaldo Cella



5 Aeroelastic analysis of the RIBES wing model 67

Figure 5.18: RIBES - FEM model of the wing structure.

tion was not repeated for the RIBESwing since it is provided by the direct comparison
between the modal and the 2-way FSI solutions).

The translating and rotational modal mass contributions along X, Y and Z direc-
tion, taking as reference a point in the middle of the root web, are plotted in figure
A.16 in appendix. The mass fraction of the first mode contributes, alone, of more than
50% of the total mass on wing translation in vertical direction. The second mode is
almost the only contributor of rotation in forward direction. Beside individual modal
and effective mass participation factors, it is more indicative to analyse the cumula-
tive contribution of each mode by the progressive summation of the mass fraction of
each mode. The sum of the fractions contributions are plotted in figure 5.19 for the
vertical translation and rotational factor along spanwise direction. The first mode has
clearly the highest contribution on translation. The highest contribution to rotation is
provided by the third mode. As evidenced by the plot in figure A.16, in fact, its single
contribution is close to 30% of the total mass. After the first, the major increments in
rotation are provided by the third, the ninth and the fourteenth mode. Modes from 15
to 28 give modest contributions. The contribution of modes higher that 28 is negligi-
ble. Major steps on rotation contribution are evidenced by the modes number 1, 3, 4,
14, 16 and 26. No significant contributions are provided by the following modes.

It was decided to limit the number of mode to extract to eight. From the aero-
dynamic point of view, since no coupling with structural deformation is present, the
number of modes to be selected is irrelevant (with the exception of the influence on tor-
sional deformation which is, however, assumed to be extremely limited). Eight modes,
which as evidenced by figure 5.19 allow to reach a total mass participating to bending
and torsion respectively of 63% and 55% of the wing mass, were considered sufficient
to qualify the comparison, in term of structure global deformation, with the displace-
ment field computed by the 2-way FSI analysis. With the view of the modal approach
to represent a “lighter” environment compared to a full 2-way coupling, in fact, the
confirmation of the validity in adopting a potentially poorly populated modal base is
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Figure 5.19: RIBES - Sum of modal mass fraction of first 50 modes.

an information that helps to explore the minimum limit of a modal setup.

Shapes and frequencies of the first eight modes extracted are reported in appendix
in figure A.17. The first and the second are graphically confirmed to be purely global
bending modes, respectively in vertical (Z) and horizontal direction (X). All the other
modes present a combination of global and local effects. Modes 3 and 6 present, in
addition to the local components, bending and torsional shapes. In modes 4, 5, 7 and
8 the global components are mainly torsional.

The total mass of the FEM model, computed by the software, is 4.59 kilograms.
The mass of the geometric model, computed by a CAD system, is 4.39 Kg. This differ-
ence is due to the simplified modelling adopted in the region of the wing constraint.
The root web, where the wing is connected to the balance by the tubular rod, has a
complex shape with several irregular reinforcements. Since it is assumed this part to
be particularly stiff, it was simply modelled as a surface 20 millimetres thick. This
mass overestimation, however, belong to a surface on which constraints are applied
to the mesh nodes. There is then no effect on solutions. An aspect that, conversely,
would have an influence, if a dynamic analysis had to be performed, is the difference
between the mass of the numerical model and the real mass of the tested wing. The
weight of the real model is, in fact, around 5.8 kilograms. The difference is devoted to
all elements that were not included in the FEM model (rivets, linchpins, tubes, wires,
sensors, primer, paint, etc. . . ) Such a difference might affect the correctness of the
computed frequencies but do not affects the computation of a steady phenomenon.
The tuning of experimental modes is a delicate task and, since it was not possible to
face it within the activities of the RIBES project, it will tackled in the future with a
specific experimental campaign.
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5.2.4 Mesh morphing setup

A set of source points, equally spaced by 0.2 meters each other, was defined on a box
shaped bounding volume in order to limit the space of the mesh morphing action. The
moving points are located on the wing wet surface. Figure 5.20 shows the domain of
the RBF setup. The limiting source points are marked in red while the moving centres,
belonging to the wing, are in green.

Figure 5.20: RIBES - domain defining the RBF fitting problem.

The setup of the RBF problem was the same for both 2-way and modal FSI imple-
mentation. It was performed by a two-step approach similar to the one adopted in the
implementation of the P1XX domain morphing problem (described in section 4.2.3).
The first step consisted in a small RBF problem, limited to the wing geometry, in which
the displacement field was prescribed by the solution of the FEM analysis (in the 2-way
FSI implementation) or by the selected normalized modal shape (in the setup of the
RBF modal base) resulting from the structural modal analysis. The second step defines
the limits of the morphing domain and prescribes the RBF solution of the first step to
the wing.

The RBF problemwas based on 30160 source points on the wing (which correspond
to the number of surface grid nodes) and on 1164 points on the bounding domain. The
RBF system was solved in 62 seconds on a workstation with 20 CPUs (2 processors
Intel Xeon E5-2680 2.8 GHz with 10 cores each ) and 128 GB of RAM. This action has
to be performed only once, during the setup phase, for each RBF solution. The fitting
action, amplifying one RBF solution, required 40 seconds. This is the action that has to
be performed during the 2-way FSI computation. In the modal approach, the required
time to morph the mesh raises with the number of modal shapes to be combined and
amplified. The maximum effort, required by adopting a modal base with eight shapes,
was 3 minutes and 31 seconds. This effort is not required during the progress of the
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CFD computation since themodal solutions are initialized and stored inmemory at the
begin of the run. The domain update of the CFD aeroelastic model is then extremely
fast (order of a few seconds and, in general, faster than one CFD iteration).

5.3 Solutions of elastic models

The rigid model was characterized at V = 40 m/s and at incidences ranging from -3.4
to 10.6 degrees. The comparison between the computed polars of the rigid model and
the experimental data is reported in figure 5.21.

��
�

�

�
�

�
�

�
�

�
�

�

�
�

�� � � �� ��

�
�

�
����

�

���

���

���

���

�

���

� ���� ���� ���� ����

�
 

!"

#$%$&

#$%$'

#$%$(

#$%$)

#$%$*

#$%$+

#$%$,

$

#( $ ( ,$ ,(

-
.

/

CFD

Experiments

V = 40 m/s
Re = 1.41 mill.

Figure 5.21: RIBES - comparison between rigid CFD solutions and experiments.

A very good agreement was obtained in the lift curves slopes and values. A relative
constant underestimation of the drag, in the order of 13-15%, was observed along the
polar curve. The reason might be devoted to the additional drag introduced by the
transition trips which, in order to ensure transition at low Reynolds numbers, must
have a relatively high thickness. The disagreement is more evident when comparing
the moment coefficients.

The two plots in figure 5.22 report the comparison between the measured and the
computed pressure coefficients at the stations 3 and 5 (see table A.2 in appendix). A
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good agreement was observed at both stations along the whole airfoil with the excep-
tion of the value measured by one pressure tap located close to the leading edge in the
section 3. The measurement hardware was inspected and verified but no malfunction-
ing was noticed. The reason of this disagreement is not clear. An hypothesis might be
to devote it, again, to the disturbance caused by the proximity of the transition tape.
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Figure 5.22: RIBES - comparison between computed and measured CP (CL = 0.736).

Figure 5.23 reports the comparison of the spanwise pressure coefficients at the con-
stant streamwise stations x/c = 0.17 and 0.56.
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Figure 5.23: RIBES - comparison of spanwise CP at two stations.

The aeroelastic verification was performed at a wing incidence (of the numerical
model) of 6.6 degree to which corresponds the target design lift of 60 kilograms. The
flexible models provided, as expected, aerodynamic solutions extremely similar to the
solutions obtained with the rigid model confirming that the deformation has no in-
fluence on aerodynamics. The variation of coefficients of all solutions was practically
insignificant (lower than 0.0006 for lift and lower than half drag count for drag). One
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iteration of the 2-way cycle described by the workflow of figure 3.3 was enough to
provide the final solution of the elastic model. Table 5.1 compares the aerodynamic
coefficients computed at V = 40 m/s and at α = 6.6 degrees by the several models.

Table 5.1: RIBES - coefficients at V = 40 m/s and α = 6.6 deg.

Case CL CD CM

Undef. 0.73635 0.03917 -0.027158

2-way 0.73668 0.03917 -0.027968

1 mode 0.73656 0.03916 -0.0284

2 modes 0.73656 0.03916 -0.028347

3 modes 0.73686 0.03918 -0.028665

4 modes 0.73689 0.03918 -0.028658

5 modes 0.73684 0.03918 -0.028655

6 modes 0.73654 0.03915 -0.028408

7 modes 0.73649 0.03913 -0.028275

8 modes 0.73649 0.03914 -0.028289

Table 5.2 and figure 5.24 report the modal coordinates computed adopting a modal
base with eight shapes. The first bending moment is by far the most dominant. The
magnitude of all other modes do not exceed the order o 2% of the first mode.

Table 5.2: RIBES - values of modal coordinates.

Mode Modal coordinate q

1 0.0075421296

2 0.000084563813

3 -0.000091689029

4 0.0000089290608

5 -0.000027857336

6 -0.0001328897

7 0.000098014211

8 -0.000014453632
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Figure 5.24: RIBES - 8 modes modal coordinates.

The qualification of the modal base is provided comparing the displacements esti-
mated by the 2-way FSI analysis and by the modal FSI numerical configuration adopt-
ing a modal base constituted by eight modes. Such comparison is reported in figure
A.20 in appendix where the modules of the vectors obtained from the difference of the
two displacements are graphically evidenced by colour plot. The maximum difference
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between the two solutions is lower than half millimetre in an area localized on a panel
behind the rear spar between the ninth and the tip rib.

5.3.1 Structural response of the elastic models

The structural responses estimated by the two numerical models were compared with
the experiments in term of stresses, in the locations of strain gauges, and displace-
ments of a set of points identified by markers located along the wing front spar on the
lower surface. The optical displacements measurements were corrected generating a
reference system linked to the wing root obtained subtracting the deformation of the
measurements chain (balances and supports). The procedure consisted is measuring
the displacement and the inclination of the structure supporting the wing to the bal-
ance and in using these data to update the reference system. The model rotation at the
root location was measurement by an inclinometer linked to the wing root rib in the
junction with the balance tubular rod. Figure 5.25 compares the measured with the
FSI models estimated displacement. Table 5.3 reports the numerical values and the
spanwise locations of the markers positioned on the front spar lower cap.

Table 5.3: RIBES - markers location and dis-
placements values.

Exp. 2-way Modal

y ∆z ∆z ∆z

mm mm mm mm

324 0.41 0.72 0.63

462 0.72 1.26 1.13

600 1.22 1.89 1.74

755 1.7 2.71 2.54

909 2.31 3.59 3.43

1055 3.01 4.49 4.34

1204 3.74 5.42 5.32

1398 5.03 6.67 6.63

1593 6.3 7.94 7.94
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Figure 5.25: RIBES - displacements comparison.

The 2-way and the modal FSI methods estimated a very similar deformation. They,
however, both overestimated the wing displacement under load. An hypothesis, to
justify this disagreement, might be related to the panels junctions modelling. The
simple assumption of connection by points do not account for friction and interference
that are present along the junctions surfaces leading, probably, to model a structure
more flexible than the real one.
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Stress state verification

The set of installed strain gauges provided a map of the stress state of the structure. All
the unidirectional sensors were aligned in spanwise direction. Unfortunately a failure
occurred on strain gauges number 1 so it was not possible to acquire its measurement.
Figures from A.21 to A.25 in appendix report the visualizations of the normal stresses,
in the Y direction, resulting from the FEM analysis in the final cycle of the 2-way
aeroelastic analysis procedure. The sensors location are marked by red circles.

Table 5.4: RIBES - measured and computed σy at strain gauges location.

ID position measured σy FEM σy
MPa MPa

1 front spar n.a. ∼ -47

2 front spar 58.1 ∼ 46

3 rear spar -1.2 ∼ -1

4 rear spar 0.2 ∼ 2

5 front spar -17.5 ∼ -16

6 front spar 18.2 ∼ 15

7 rear spar -9.5 ∼ -7

8 rear spar 11.5 ∼ 9

9 front spar -12.2 ∼ -11

10 front spar 12.3 ∼ 10

11 rear spar -8 ∼ -8

12 rear spar 7.5 ∼ 6

13 front spar thickening -15.6 ∼ -38

14 front spar thickening 15 ∼ 36

15 upper skin -143.2 ∼ -21

17 upper skin -31.5 ∼ -15

The values of stresses extracted from the FEM model are compared to the mea-
surements in tables 5.4 (for the unidirectional strain gauges) and 5.5 (for the rosettes).
In general, a reasonable matching between measured and computed stresses was ob-
served. Significant disagreements are, however, present in locations close to the root
region where higher stress gradients are present. In particular, the two strain gauges
located on the front spar thickening (numbers 13 and 14) and the ones located on the
upper skin (number 15 and 17) showed the largest differences. Concerning the two
sensors on the front spar, the FEMmodel significantly overestimated the stress values.
In the FEM configuration, no junction between reinforcements and spar is modelled.
One of the hypotheses to justify such differences might be that the load is only partially
transferred to the two elements due to microslips occurring between the riveted ele-
ments. The sensors on the upper skin, conversely, reported a stress state much higher
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than computed. The combination of the two sets of information (strain gauges on the
front spar and on the upper skin) would suggest that the distribution of the load be-
tween the front spar and the skin was not properly captured. Further investigations
will be necessary to better understand the reason of such disagreement. Uncertainness
might be also introduced by the junction between the two front spar thickening and
the root rib. The elements are, in fact, linked by two linchpins (with a diameter of 7.92
mm) which were not modelled in the numerical configuration.

Principal stresses are computed according to the following equations:

σ1 =
E

(1− ν2) (ǫ1 + νǫ2) , σ2 =
E

(1− ν2) (ǫ2 + νǫ1)

where the principal strains ǫ1 and ǫ2 are computed as

ǫ1,2 =
ǫa + ǫc

2
± 1√

2

√

(ǫa − ǫb)2 + (ǫb − ǫc)2

The equations above refer to a rosette with three strain gauges oriented at 0, 45 and
90 degrees. The principal angle is referred to the strain gauges b and is expressed by

φ =
1

2
arctan

(

ǫa − 2ǫb + ǫc
ǫa − ǫc

)

+45
φ

ε₁

ε₂

gauge a

gauge b

gauge c

Table 5.5: RIBES - principal stresses and directions (respect y) at rosettes location.

measured FEM

rosette 16 (lower skin)

σ1 58.14 MPa ∼ 36 MPa

σ2 3.95 MPa ∼ 11 MPa

φ 65.25 deg ∼ 77 deg

rosette 18 (upper skin)

σ1 -4.58 MPa ∼ -4 MPa

σ2 -32.28 MPa ∼ -20 MPa

φ 7.15 deg ∼ -6 deg

rosette 19 (front spar)

σ1 8.62 MPa ∼ 11 MPa

σ2 -11.16 MPa ∼ -14 MPa

φ 45.33 deg ∼ 43 deg
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Conclusions

M
ethods for Fluid-Structure Interaction analyses based on high fidelity numer-
ical solvers are considered the most accurate approach to simulate aeroelas-
tic phenomena. The cutting-edge technology, nowadays, consists in coupling

RANS codes with FEM solvers. Both technologies are very well consolidated analysis
methods widely used in many fields of engineering and extensively adopted in several
aspects of design. Engineers have a deep confidence in their accuracy and range of
applicability. When coupled to face FSI problems in the so called 2-way procedure,
however, several issues affecting the efficiency of the workflow, might arise. The cou-
pling consists in iterating between FEM analyses, in which the loads are derived from
the aerodynamic solution, and CFD computations, in which the domain is adapted
to the deformed geometry estimated by FEM models. The points relate to the strat-
egy to be adopted in the implementation of the workflow that governs the CFD-CSM
closed loop and in the methods used to enhance the information exchange between
the two numerical environments. The loads transfer process from the fluid dynamic
solution to the FEM domain requires an interpolation procedure that, in general, in-
troduces errors that depend on the algorithm adopted and on the differences between
the two discretizations in the common boundary regions. This error was showed to
be eliminated (on forces resultants) adopting opportune corrective coefficients as in
the mapping method developed within the EU RIBES research project. The trickiest
aspects of FSI analyses remains the method through which to receipt, within the CFD
environment, the information about the shape the model assumes under aerodynamic
loads. A procedure able to adapt the computational domain to the solution of the
FEM solver is required. Among the several strategies available in literature, the most
promising to face this problem is recognized to be the mesh morphing approach using
Radial Basis Functions.

In the work here presented, an RBF mesh morphing technology was used to imple-
ment high fidelity FSI analysis methods that were applied to the static aeroelastic anal-
ysis of aircraft wings. In addition to a traditional CFD-CSM coupling, a method based
on the modal shapes superposition was implemented and validated. The assumption
at the base of the modal approach consists in representing the model deformation by a
combination of a limited number of natural modal shapes of the structure. The setup
of the modal FSI analysis procedure is then based on a preliminary modal FEM compu-
tation aimed to the extraction of the structural natural modal shapes and frequencies
of the object under investigation. A set of RBF solutions, one for each selected modal
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shape, is then computed and stored to constitute the mesh morphing database used to
generate the parametric mesh morphing criterion. The wing deformation is applied
amplifying the RBF field according to the modal forces computed during the CFD it-
erations. The main advantage of the procedure is that an intrinsically CFD flexible
model, fully working within the fluid dynamic solver environment, is generated. No
further iterations with the structural solver are required, nor routines or codes cou-
pling procedures need to be developed with a clear advantage in terms of workflow
robustness. The main limitations consist in the restriction of validity to linear prob-
lems and in the selection of the minimum number of modal shapes, which is unknown
a priori, to be adopted in the implementation of the parametric mesh formulation.

The modal approximation allows, compared to a 2-way method, to enhance the
computational performance for several reasons:

• the morphing action, once the run is initialized, is practically inexpensive;

• the mesh update is performed continuously (every prescribed number of itera-
tion) during the CFD computation;

• the whole FSI analysis is performed within the same numerical environment and
no transfers of information between CFD and CSM solvers is required;

• no CFD restarting procedures or solutions interpolations are required (on this
aspect the required effort is strongly solver-dependent).

The time-to-setup of modal analyses depends on the complexity of the problem
but, in general, it requires less effort compared to the setup of a complete 2-way cou-
pling especially when implementing automatic procedures suitable, for instance, to be
integrated in MDO environments.

The two FSI methodologies here described were validated against two static test
cases: the Piaggio Aerospace P1XX mid-size business jet, a complete aircraft model
tested in a transonic wind tunnel, and an half wing model, manufactured within the
RIBES EU project and replicating a typical wing box topology, tested in a low speed
facility. The aim of the first assessment was to evaluate the numerical methods ca-
pability to capture the structural-aerodynamic coupling mechanism that derives from
the sweep angle of the aircraft wing. The second validation was addressed to the struc-
tural aspects of the numerical modelling. In particular, the attention was focused on
the evaluation of themethods capability to face aeroelastic problems that are more rep-
resentative of realistic wing structures. For this reason, the model was instrumented
with a set of strain gauges to provide a map of the stress state of the wing structure to
be compared with the numerical simulations outputs.

The modal bases adopted in the modal FSI analyses implementation were com-
posed of the first six modes of the aircraft wing and of the first eight modal shapes
for the half wing structure. In order to gain a sensitivity on the influence of the
modal bases composition, the analyses were performed incrementing sequentially the
adopted number of modes and comparing all solutions (including the 2-way) with the
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experimental measurements. In both modal analysis configurations, the first modes
showed to be largely the most dominant over all the others. In fact, moderate impacts
on the solutions were observed when adopting more than two modes. The first con-
clusion is that, for lifting bodies, few modes are sufficient to support a representation
of the shape deformation under load suitable to provide an aeroelastic solution having
an accuracy comparable to the solution provided by a complete 2-way FSI analysis.
In both validation sessions, furthermore, the 2-way and the modal based FSI analyses
provided, from an engineering point of view, almost the same solutions, confirming
the modal approach to be a valid candidate to setup efficient and accurate static and
dynamic FSI analyses.

When the validation activity against the P1XX measurements was performed, the
load mapping procedure developed within the RIBES project was not yet available.
The procedure adopted at that time to transfer the pressure from the CFD to the FEM
domain in the 2-way FSI analysis introduced a systematic error on lift resultants in
the order of 2.5%. When comparing the 2-way with the modal solution, it was then
expected a difference of a similar order of magnitude. As previously introduced, con-
versely, the 2-way and the modal solutions were extremely similar. Since the 2-way
and the modal analyses provided very similar solutions also in the FSI analysis of the
RIBES wing, in which the mapping procedure adopted introduces corrective coeffi-
cients that eliminate themapping errors on forces resultants, we are induced to assume
that moderate errors on vectors mapping between meshes do not affect substantially
the aeroelastic analyses of lifting surfaces.

Three cycles of the 2-way closed loop were required to obtain a converged static so-
lution in the FSI analysis of the P1XX aircraft model, while only one was sufficient for
the analysis of the RIBES wing structure. The latter, in fact, is a straight wing with no
sweep angle and the effect of its deformation on aerodynamic is negligible. The solu-
tions were compared in terms of coefficients and pressure distribution with the experi-
mental measurements. The flexibility of the P1XXmodel during tests was not verified
but the strong coupling between wing deformation and aerodynamic performance al-
low to search an indirect confirmation of the quality of the FSI analyses comparing
the aerodynamic coefficients with experiments. The solutions of the flexible models,
in fact, better match the measured lift polar, but a better confirmation is provided
by evaluating the behaviour of the pressure distribution. Transonic speed conditions,
in fact, involve the generation of supersonic regions that recover the subsonic condi-
tions through recompressions whose structures are typically extremely sensitive to any
geometric configuration variation. The flexible models provided a description of the
shock structures more coherent with experiments in terms of strengths and positions,
suggesting a correct estimation of the wing deformation.

The aerodynamic verification of the RIBES wing polars showed a good agreement
with measurements and, as expected, no effect of elasticity was observed. A slight
underestimation of drag, may be due to the effect of transition trips, was observed.
The validation was focused then on the structural deformation and on the stress state
verification. The numerical elastic models showed to be more flexible than how evi-
denced by the measurements. The maximum displacement computed is in the order
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of 25% higher than measurements. Although the shape and the general behaviour of
the elastic models seem coherent with measurements, such a difference is higher than
expected. The reason of this disagreement is not clear and further investigations will
be necessary. The research of a justification might be oriented to the opportune mod-
elling of the connections between the wing components. In the FEM configuration,
discontinue junctions, linking the points of the elements meshes corresponding to the
rivets location, were modelled. The shell elements belonging to the skin, for instance,
were constrained with the shells belonging to the spar caps by the common nodes that
were opportunely generated matching the position of the real junction lines. This sim-
plification does not involve the modelling of the friction that occurs between skin and
spar caps (induced by the preload of the rivets) and neglects the interference of the
plates. Neglecting those two effects might induce to underestimate the rigidity of the
whole structure.

Concerning the stress state verification, a good agreement with measurements was
observed in regions far from the wing root. Some disagreements, particularly large in
some cases, became evident in the areas close to the junctions at the wing root where
higher gradients are present. The differences consist of a significant underestimation
of the stress present on the upper skin and an overestimation of the stress state on the
reinforcements nailed to the front spar. In other words, the measurements suggest that
the load transfer from the skin to the spar was not properly captured by the numerical
model and was, in general, numerically overestimated. The suspect is that the actual
contribution of the wing elements was not properly modelled due to aspects that are
ignored in the FEM configuration. A hypothesis might be, for example, the presence
of microslips effects between the front spar and its reinforcements that leaded to an
erroneous estimation of the load shared between the skin and the spars.

It has to be highlighted that the developed numerical aeroelastic configurations
showed to be very effective. The RBF morphing approach to the FSI problem, in par-
ticular, makes the procedures extremely efficient and robust. The disagreements evi-
denced in the RIBESmodel analysis strictly concern aspects related to FEM modelling
techniques or measurements uncertainness, which are often present in any experi-
mental correlation, and contribute to improve the knowledge that allows to refine our
analysis capability. The RIBES test case was setup exactly for this purpose and from
this point of view it demonstrated to represent a valuable source of information. On
the other side, the setup of the FSI configurations allowed to appreciate the efficiency
of the RBF based FSI analyses and to focus on aspects of numerical modelling that are
oriented to the accuracy improvement of the analyses.

All measurements, geometries, numerical models and solutions of the numeri-
cal/experimental activities performed within the RIBES project will be soon available
on line (at the project web site address www.ribes-project.eu) to the scientific com-
munity. A web portal is under development with the wish the RIBES test case to con-
stitute an enhancement for information sharing between scientists and a framework
for further discussions, research activities, proposals and collaborations.

Ubaldo Cella
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Figure A.1: P1XX - displacement of the wing computed by 2-way analysis.
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Figure A.2: P1XX - geometric differences between elastic models solutions.

Figure A.3: P1XX - pressure contour plots on the suction side of the wing.
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Figure A.4: P1XX - CP comparison at the four monitored wing stations.
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Figure A.5: RIBES - front spar thickening.

Figure A.6: RIBES - assembly of the model.
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Figure A.7: RIBES - assembly of upper panel.

Figure A.8: RIBES - final model surface finishing.
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Table A.1: RIBES - list of model elements and dimensions.

List of wing elements (material: Al 2024T3)

Number of elements component thickness

mm

1 front spar 1

1 rear spar 1

2 front spar thickening 4

8 wing box ribs 0.6

1 root wing box rib 6

9 leading edge ribs 0.6

9 trailing edge ribs 0.6

1 tip rib 0.6

3 stringers 0.6

1 skin leading edge 0.6

1 skin upper box 0.6

1 skin lower box 0.6

1 skin trailing edge 0.4

List of junctions elements

Number of elements component dimension

mm

800 CherryMAX rivets

8 linchpins and nuts 4.8

2 linchpins and nuts 7.92

Figure A.9: RIBES - reconstruction measurement instrument.
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Table A.2: RIBES - Pressure taps locations and number.

Section y y/b chord pressure taps

mm % mm

1 160 10 582 4

2 450 28.1 549 4

3 600 37.5 533 39

4 990 61.9 488 4

5 1200 75 465 26

6 1500 93.8 431 4

Figure A.10: RIBES - pressure tubes installation.

Figure A.11: RIBES - pressure taps locations.
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Figure A.12: RIBES - map of strain gauges position.

Table A.3: RIBES - List of strain gauges.

ID position type y

mm

1 front spar unidirectional 35.5

2 front spar unidirectional 35.5

3 rear spar unidirectional 35.5

4 rear spar unidirectional 35.5

5 front spar unidirectional 310

6 front spar unidirectional 310

7 rear spar unidirectional 297

8 rear spar unidirectional 297

9 front spar unidirectional 600

10 front spar unidirectional 600

11 rear spar unidirectional 598

12 rear spar unidirectional 598

13 front spar thickening unidirectional 35.5

14 front spar thickening unidirectional 35.5

15 upper skin unidirectional 35.5

16 lower skin rosette three signals 35.5

17 upper skin unidirectional 169

18 upper skin rosette three signals 169

19 front spar rosette three signals 35.5
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Figure A.13: RIBES - installation of transition trips.

Figure A.14: RIBES - wing tip displacement measurement.

Figure A.15: RIBES - balance inclination measurement.
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Figure A.16: RIBES - modal mass fraction of first 50 modes.
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Figure A.17: RIBES - first eight vibrating modal shapes of the wing.
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Figure A.18: RIBES - positions of the FEM modelled junction points.

Figure A.19: RIBES - displacement of the wing computed by 2-way analysis.
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Figure A.20: RIBES - geometric differences between elastic models solutions.

Figure A.21: RIBES - 2-way FEM solution (strain gauges 2, 13, 14 and rosette 19).
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Figure A.22: RIBES - 2-way FEM solution (strain gauges 3 and 4).

Figure A.23: RIBES - 2-way FEM solution (strain gauges 5, 6, 9 and 10).
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Figure A.24: RIBES - 2-way FEM solution (strain gauges 7, 8, 11 and 12).

Figure A.25: RIBES - 2-way FEM solution (strain gauges 15, 17 and rosettes 16, 18).
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